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ABSTRACT 

 

Pheromone particle swarm optimization (PSO) of stochastic systems tests the impact 

of adjustments to algorithm parameters on algorithm performance when searching for 

optimal solutions to stochastic simulations. To test the benefit of adjusting PSO, the tuned 

algorithm is compared to the results from the commercial optimization software, OptQuest. 

In addition, two modifications to pheromone PSO are proposed. These include utilizing 

orthogonal arrays as an initial position for the algorithm and biasing the release of 

pheromones in the first iteration based on the relative strength of the objective function. 

These modifications are shown to improve the average objective functions found as well as 

the time to convergence in the optimization of some problem types. This paper also 

highlights the applicability of using pheromone PSO to optimize stochastic simulations 

compared to commercial optimization software.
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CHAPTER 1. OVERVIEW 

Simulations of complex systems are continually being developed by industry as the 

rise in computing power and software makes it cost effective to do so. A current challenge is 

finding new and better ways to optimize systems via simulation. There are heuristic 

optimization methods that utilize tabu search, scatter search, mixed integer programming and 

neural networks to find optimal levels for decision variables (resource levels, number of 

transporters, etc.) in simulations. These work well and can be computationally efficient 

methods to optimize a system. The rise in the availability of computing power allows the 

utilization of other methods that may provide consistent solution quality in more situations.  

The methods being referred to are evolutionary computational techniques, which include 

genetic algorithms (GA) and particle swarm optimization (PSO). These types of algorithms 

utilize natural schemas and mimic their design and decision criteria to find potentially good 

solution spaces. GA’s work with Darwin’s theory that the strongest survive; the algorithm 

tries to find the good “traits” of a solution in the belief that the optimal solution will have 

those same “traits.”  PSO is based on the swarming of bees and flocking of birds, where each 

entity or particle is drawn to its best solution and the swarm’s best solution. With this 

information, particles move through the design space in an effort to find the global best 

solution. Utilizing the before mentioned general schemas, as well as including a certain 

amount of randomness in the algorithm helps evolutionary algorithms avoid getting trapped 

in local minima and find the global minimum. The following work focuses on using 

variations of PSO to find optimal levels for decision variables to stochastic simulations and 

the impact that adjusting parameters has on this type of optimization problem.  
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1.1 Introduction 

PSO is a relatively new optimization method that was developed by Kennedy and 

Eberhart in 1995. In this work, PSO will be used to heuristically optimize decision variables 

in simulations created in Arena, a discrete event simulation software package created by 

Rockwell Software. Unlike many other works in this area, the primary focus will be to test 

how parameter adjustments and minor modifications to the algorithm affect convergence and 

computational time.  

1.1.1 Pheromone PSO for Stochastic Models 

The first hypothesis that will be tested in this work is that pheromone PSO is a 

constructive addition to standard PSO and will decrease solution time when solving 

stochastic optimization problems. 

 1.1.1.1 Work on Pheromone PSO 

Work by Kalivarapu et al. (2007) shows that pheromone PSO can have a positive 

impact on performance when used to find the minima of highly complex nonlinear 

mathematical functions. This will be rigorously tested on stochastic problems by comparing 

the solution and solution time of pheromone PSO to that of traditional PSO. 

1.1.2 Parameter Optimization of Pheromone PSO 

The second hypothesis tested is that a correctly tuned pheromone PSO for stochastic 

problems will have a decreased time for convergence and an increased quality of solution. To 

test this problem, a tuned pheromone PSO solution will be compared to the results of 

OptQuest, a commercial simulation optimization package included with Arena. 
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1.1.3 Modifications of Pheromone PSO 

The final hypothesis tested is that utilizing two minor algorithm changes can enhance 

the consistency and quality of the algorithm. The modifications that will be tested use 

orthogonal arrays to select starting points for the algorithm, and only particles in relatively 

good solution space drop pheromones. These adjustments don’t change the basic structure of 

the algorithm, but they try to ensure consistent coverage of the solution space and bias the 

starting direction toward the best areas found in the first iteration.  

  



www.manaraa.com

4 
 

CHAPTER 2. REVIEW OF LITERATURE 

2.1 General PSO 

PSO is an evolutionary computational technique developed by Kennedy et al. (1995). 

It uses the concept of birds flocking and swarms of fish to propel the algorithm across the 

solution space on its way to the global optimum. After the inception of PSO, Eberhart et al. 

(1996) eliminated a number of extraneous parameters that didn’t aid in optimization. This 

slimmer version is what is now known as the basic PSO algorithm. The algorithm is 

computationally quite simple: A swarm of particles is selected, with each particle 

representing a random discrete point in the solution space. Every particle is then evaluated on 

the strength of its current location. The strength is compared to the particle’s personal best 

location and to the swarm’s best location, updating each if the current position is found to be 

better. The algorithm then determines where a particle is going to move next using a velocity 

update equation based on its current location compared to: what direction it was moving in 

the last iteration, the best location it has been, and the best location the swarm has been. The 

velocity update equation is shown mathematically as follows, where each dimension 

represents a control parameter being heuristically optimized: 

��,�,�: velocity of particle �, in dimension �, at time � 

�: constant, controlling the local and global search ability 

������: random number from #0,1& 
'�: global best location in dimension � 

)�,�: best location found for particle �, in dimension � 

+�,�,�: current location of particle �, in dimension �, at time � 
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 ��,�,� , ��,�,�-. / 
. 0 ������ 0 1)�,� 2 +�,�,�-.3 / 
4 0 ������ 0 �'� 2 +�,�,�-.� 

(2.1) 

Using the result from equation 2.1, the particle’s location can be updated with 

equation 2.2. 

+�,�,� , +�,�,�-. / ��,�,� 

(2.2) 

The velocity and position update are continued for each member of the swarm. The 

particles’ new locations are evaluated and the process repeats until the swarm satisfies the 

preset convergence criterion.  

Since PSO’s inception in, there has been a large amount of research conducted on it. 

Poli et al. (2008) categorize the work that has been completed to date; this paper will only 

focus of the work relevant to this extension.   

There has been a considerable interest in finding ways to reduce the time to 

convergence and the consistency of the PSO algorithm.  To accomplish this, researchers have 

employed a variety of methods, from minor parameter modification to adding additional 

components to the velocity update equation. Some minor parameter modifications that have 

been made include: decreasing the weight of the inertia factor, decreasing the overall velocity 

of the swarm, optimizing the population depending on the dimension of the problem, and 

adjusting the speed of the swarm based on the iteration number. The components that 

researchers have added to the velocity update equation include the digital pheromone method 

and the neighboring best method. 
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2.2 Inertia Weight 

The next major addition that is consistently included with PSO is the weighted inertia 

factor (Shi et al. 1998a, 1998b). In this addition, they attempt to modify the algorithm to give 

it a strong global search ability at the beginning of the optimization and a strong local search 

ability at the end of the optimization. This is accomplished by decreasing the weight that 

inertia has on the next position linearly throughout the optimization. The revised velocity 

update equation is as follows: 

��,�,� , 5 0 ��,�,�-. / 
. 0 ������ 0 1)�,� 2 +�,�,�3 / 
4 0 ������ 0 �'� 2 +�,�,�� 

(2.3) 

In equation 2.3, w is decreased gradually throughout the optimization, typically 5% 

per iteration, to adjust the search from a global to a local search. Alternatively, in work by 

Zheng et al. (2003) it is argued that for some problem types an increasing inertia weight will 

increase both the convergence speed and the solution precision. 

2.3 Constriction Factor 

PSO was originally based on modeling an algorithm to a social system, and was 

based on trial and error. This original PSO lacked a thorough mathematical foundation. Work 

done by Clerc (1999), shows that a constriction factor may be a necessary addition to ensure 

convergence. While a detailed explanation of the math behind the algorithm is beyond the 

scope of this paper, the simplified idea behind this method is to multiply the entire velocity 

update equation with a function K, where K is a function of c1 and c2 as shown in equation 

2.4 and equation 2.5 below. 
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��,�,� , 6 0 #��,�,�-. / 
. 0 ������ 0 1)�,� 2 +�,�,�-.3 / 
4 0 ������ 0 �'� 2 +�,�,�-.�& 
(2.4) 

 

6 , 282 2 9 2 :94 2 498 , 5<=�= 9 , 
. / 
4, 9 > 4  
(2.5) 

In work by Eberhart and Shi (2000), 9 is set to 4.1, thus making the constant 

multiplier K equal to 0.729. They also use a maximum velocity for each dimension i, set to 

the dynamic range of that dimension. This is argued to be a robust parameter selection for 

most problem types. 

2.4 Parameter Optimization 

According to El-Gallad et al. (2002), “Unlike many other computational intelligence 

techniques, the particle swarm optimizer has few parameters to tune. However, properly 

chosen values for these parameters can positively affect the accuracy of the obtained results 

as well as the time consumed during the search process.” El-Gallad examines the impact of 

three parameters: swarm size, number of iterations, and velocity of particles. He argues that, 

for the particular function tested, as the swarm size increases, the quality of the solution 

increases. He also shows that as the swarm size increases one is met with diminishing gains 

in quality improvement. El-Gallad states that a good swarm size for the seven-dimensional 

test problem is 30 particles. He also argues that the relationship with swarm size and quality 

of solution is true for the number of iterations, and proposes a number of iterations equal to 

500. He proposes that an adaptive velocity based on work by El-Gallad et al. (2001) is best. 

Recent work by Zhang et al. (2004) discusses optimal parameter choice for constriction 
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factor PSO. The parameters examined are the sum of  
. /  
4 , 9, swarm size, and the 

maximum allowed velocity (?) as a proportion of the variable range. Each variable was 

tested on nine common test functions. Zhang et al. (2004) concluded that 9 should be set to 

4.05 for highly multimodal functions and to 4.1 for unimodal functions. A ? in the range of 

[0.01, 1] is appropriate, with a value of 0.5 for multimodal functions and a value of 0.05 for 

unimodal functions. This implies that particles should take larger steps in more complicated 

search spaces. The optimal swarm size was set to 50 for higher dimensional problems and to 

30 for lower dimensional problems. 

2.5 Digital Pheromones  

 In addition to adjusting parameters, many researchers have worked on variations to 

PSO to enhance convergence. One variation is adding digital pheromones. Pheromones are 

scents left behind by insects to mark food and nesting locations for other members of their 

swarm. The scent becomes stronger as more members of the swarm make their way to that 

particular area and find it suitable. Utilizing this concept, the digital pheromone was born, 

where digital marks known as pheromones are dropped by particles when they find 

promising areas of the design space. Using digital pheromones to aid in solving optimization 

is a recent development that started in the early 1990’s in ant colony optimization, where the 

concept was used to mark promising paths in traveling salesmen type problems (Gambardella 

et al. 1996; Li et al. 2003).  
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 2.5.1 Pheromone PSO 

The concept for digital pheromones was detailed in research done by Kalivarapu et al. 

(2007). The basic idea behind pheromone PSO is that, in addition to the global best, personal 

best, and momentum influencing a particle’s velocity, a target pheromone has an additional 

influence. This is shown in equation 2.6, where tpi is the target pheromone selected by 

particle i:  

��,�,� , ��,�,�-. / 
. 0 ������ 0 1)�,� 2 +�,�,�-.3 / 
4 0 ������ 0 �'� 2 +�,�,�-.� /  
@
0 ������ 0 ��)�,� 2 +�,�,�-.� 

(2.6) 

Along with modifying the velocity update equation, there are several other changes to 

the algorithm when adding pheromones to PSO. These changes include choosing when a 

pheromone is dropped by a particle, how to select a target pheromone, merging of 

pheromones in the pheromone field, and decay of pheromones. A summary of how these 

changes are dealt with will follow and a detailed explanation of the changes can be found in 

Kalivarapu et al. (2007).   

2.5.2 Pheromone PSO Implementation 

When implementing pheromone PSO, the dropping of pheromones must be 

addressed. In the work of Kalivarapu et al. (2007), two methods of pheromone release are 

explained: 50% of the swarm population will randomly drop a pheromone, and any swarm 

member that finds a better personal best location will drop a pheromone. The next issue to 

address is how to select a target pheromone. This is done by measuring the normalized 
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distance on all dimensions of the problem, subtracting that from one, and multiplying the 

difference by the pheromone strength (P). This is shown mathematically as follows, where: 

�: number of design variables 
A)�: location of pheromone j 
A�: location of particle i 
���'=�: allowed variable range in dimension � 

� , EF GA)� 2 A����'=� H4I
.  

JK , �1 2 ��J 

tp� , L�+ �JK� 

(2.7) 

To ensure that the same point doesn’t have multiple pheromones dropped on it, a 

method of merging pheromones in the same relative location was created. This is done by 

determining the radius of influence of a given pheromone, and if it overlaps with another 

pheromone, the two are merged with a strength equal to the average of their individual 

strengths. In addition to managing pheromones that are placed on top of one another, 

pheromones released early in the optimization process may represent poor locations of the 

design space and could slow convergence. This is dealt with using a pheromone decay factor 

that reduces the strength of every pheromone with each iteration. When a pheromone is 

released, it starts with a strength of one, and the strength is reduced by 5% each iteration. 

This ensures that pheromones released early in the optimization process will have a 

significantly decreased influence later in the optimization process (Kalivarapu et al. 2007). 
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 2.6 Neighboring Best Particle 

The neighboring best particle method has been developed by a number of people, 

with some minor variations among the versions. In the neighboring best particle method, 

particles are influenced by a nearby particle that has a good fitness value as well as the global 

best particle and the personal best location. The method of determining which particle to 

select varies. One good method was developed by Veeramachaneni et al. (2003), using a 

ratio of the difference in the fitness value to the distance to the proposed particle. This is 

shown in the equation 2.8 below: 
MNO��, P, �� , Qitness distance ratio 

A�� , location of neighboring particle P in dimension �  

A� , location of particle � in dimension � 

Fitness��� , Qitness value of particle � 
MNO��, P, �� , Fitness�P� 2 Fitness���|A�� 2 A��|  

(2.8) 

Using equation 2.8, the velocity update equation selects the neighbor particle with the 

best fitness improvement to distance ratio and uses this new location as a third direction in 

the update equation. The general form is shown below in equation 2.9: 

��,�,� , ��,�,�-. / 
. 0 ������ 0 1)�,� 2 +�,�,�-.3 / 
4 0 ������ 0 �'� 2 +�,�,�-.� /  
@
0 ������ 0 �J�T,U 2 +�,�,�-.� 

(2.9) 

This works well with a number of applications, as shown in work by Veeramachaneni et al. 

(2003). 
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2.7 Constrained Optimization 

The PSO algorithm was originally designed for an unconstrained search space. Since 

most optimization problems have constraints, methods of adapting the PSO algorithm to 

manage constraints have been created. One of the most popular methods is based on an 

adaption from Lagrangian relaxation, as described by Lu et al (2007). In this method, the 

PSO’s velocity update equation is modified and there is a change in the method of evaluating 

the objective function. The objective function is evaluated as required in the problem with an 

additional term, V, as shown below in equations 2.10-2.12:  

min WXYP=
���= MZ���[� / V\ 

(2.10) 

5<=�= V ,  F L�+W0, '��+�\]
�^. /  F L�+_0, |<��+�| 2 `a]bc

�^]b.  

(2.11) 

��,�,� , 58)�,�,�-.2)�,�|d�'����,�,�-.3 / �����1� 0 1)�,� 2 +�,�,�3 / �1 2 �����1�� 0 �'�
2 +�,�,�� 

(2.12) 

The addition of V to the objective function penalizes the point evaluated for violating 

any constraints, thus encouraging the algorithm to pick points that are feasible by causing the 

particles to fly toward the feasible region. This is shown to work in cases with a high ratio of 

feasible space to available search space.  
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2.8 Stochastic Simulation Optimization 

Optimizing stochastic systems is a concept that has been around since there have been 

systems that needed improvement. The first method was to change the settings of the system 

and see how the output was affected. Since the inception of the computer, models have been 

created to allow production controllers to test proposed additions without impacting 

production, allowing only for the implementation of changes that are expected to have a 

positive impact on the system. Over time, computer processing power has increased 

dramatically. Correspondingly, so has the complexity of systems that are able to be modeled. 

The traditional method of determining a good possible scenario to model is to take and test a 

particular level of settings suggested by a supervisor and see if it improves the current output 

of the system. This particular method requires an extremely high level of system knowledge, 

and even so has a very low chance of selecting the global best operating parameters. Work by 

Al-Aomar (2000) showed that using a discrete event simulator combined with expert 

knowledge, it was possible to make substantial improvements to a typical linear program 

optimization in a product mix simulation. The next common research method is to use typical 

optimization routines to select parameters that are used to control the system. Since this area 

has a high potential for substantial savings, a large amount of research has been dedicated to 

this area. It has also led to some commercial products that can be used to optimize simulation 

models. The relevant research in this area will be discussed next. 

2.8.1 Stochastic Simulation Optimization with Heuristic Methods 

Meketon (1987) surveyed existing methods of selecting optimal simulation 

parameters. At that time, the usual methods fell into three categories: traditional non-linear 
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programming techniques, response surface methodologies, and stochastic approximations. 

Since then, there has been a large push toward utilizing heuristic search techniques to solve  

highly nonlinear discontinuous problems. Work by Konak et al. (2005) discusses optimizing 

simulation problems using tabu search, including discussion of the profound effect that 

parameter selection has on the performance of the search.  Work by Yang et al. (2004) 

discusses using tabu search to optimize the parameters of a flow shop scheduling problem. 

Empirical results showed tabu search as a promising method to solve the flow shop 

scheduling problem. Simulated annealing is another heuristic search method that was first 

developed in 1953 by Metropolis et al. It is based on emulating the physical process of 

aggregating particles in a system as it is cooled. The concept has since been developed into 

an algorithm that can be used to solve a variety of optimization problems. This is shown in 

work by Manz et al. (1989), where simulated annealing was used to optimize parameters for 

an automated manufacturing system simulation. 

2.8.2 Stochastic Simulation Optimization with Evolutionary Algorithms 

As an alternative to these types of heuristic search methods, evolutionary search 

methods such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are 

showing a wide range of applicability and robustness. These methods work well to solve a 

wide variety of problems and have received a large amount of research. In work by Joines et 

al. (2002), GA is used to optimize simulations of a supply chain to set optimal order quantity 

and time between orders. Koyama et al. (2004) worked on optimizing routing algorithms 

with GA using a simulated system. Wang et al. (2003) used a fuzzy adaptation of GA to 

optimize the industrial fermentation tower process and improved the expert system being 
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utilized. Dahal et al. (2005) used a standard GA optimizer to solve a simulation of an actual 

port facility to minimize total costs by reducing delays. Persson (2006) was able to use GA to 

solve a multi-objective mail sorting simulation created in Arena.  

Yun et al. (2006) compared the results of GA to that of simulated annealing and 

OptQuest. The performance of these three algorithms was compared using a traffic 

management optimization problem. It was found that GA converged to a better solution in a 

shorter amount of time on a per iteration basis. This raises a concern because GA is a swarm 

based algorithm and each iteration takes 20-50 times the amount of computational time as 

OptQuest or simulated annealing, depending on the population used in the GA algorithm. 

PSO has recently been used to solve the stochastic optimization of simulation 

problems. Zhang (2008) used PSO to solve a multi-objective simulation of earthmoving 

operations, comparing results to those of an exhaustive search. Alkhamis (2005) used PSO to 

optimize a repairable item inventory system, which examines working with discrete and 

integer variables by solving the continuous case and rounding to the nearest integer value. 

The work by Wu et al. (2005) compares the results of optimization of a ready mixed concrete 

simulation using PSO and GA. In this optimization case, PSO with constriction factor and 

weighted inertia reaches a better solution significantly faster than a GA-based optimization. 

While this is a very useful finding, the lack of variations and adjustments of the PSO and GA 

algorithms, as well as only testing it on one case shows there is still a need to optimally 

adjust PSO for stochastic discrete event simulation.  
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2.8.3 Stochastic Simulation Optimization with Commercial Products 

In addition to these heuristic search methods, some commercial heuristic simulation 

optimization programs have been created, including OptQuest and ProModel Optimization 

Software Suite. These software programs utilize popular optimization techniques and are 

integrated with simulation programs. They can be easily interfaced with a simulation model 

to find optimal decision variable levels. April et al. (2001) describe the algorithm that is used 

in the OptQuest simulation optimization package as an integrated set of methods, including 

tabu search, scatter search, mixed integer programming, and neural network. While the exact 

method in which these algorithms are utilized is not public, work by Kleijnen (2006) shows 

the diverse applicability of the software. Kleijnen’s work also discusses the alternative 

methods of setting convergence criteria. The work shows that, while the default settings are 

appropriate for most problem types, a large amount of efficiency is gained by good selection 

of the starting solution, choice of suggested solutions, and size of the search area. 

2.9 Literature Conclusion 

As noted previously, much work has been focused on optimizing PSO for solving 

linear and nonlinear deterministic systems. Significantly less research has been done on 

solving stochastic problems, especially when dealing with simulation where steady state is 

not guaranteed. In this type of volatile problem, little research has been completed.  
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CHAPTER 3. METHODOLOGY 

3.1 Overview of Methodology 

Pheromone PSO was tested with stochastic simulations by interfacing multiple 

versions of PSO, including pheromone PSO, with Arena models. Once it was shown that 

pheromone PSO was a constructive addition to PSO, the input parameters for pheromone 

PSO were tuned to solve stochastic problems. The solution time and solution quality 

achieved with the optimization was compared to the solution time and solution quality found 

when solving the same problem with OptQuest. Once this test was completed, two minor 

modifications were made in order to further enhance the algorithm: orthogonal arrays were 

used to place the initial solutions, and pheromones were initially placed only at points with 

relatively high objective function values. 

3.2 Development of Models to Optimize 

The first step was to create the simulations to be optimized and establish cost metrics 

on which to rate the simulation. Following, this process is described for four test simulation 

models. 

3.2.1 Asynchronous Automated Assembly System (AAAS) 

The first model optimized was a closed loop asynchronous automated assembly 

system (AAAS) based on the model described in Stochastic Optimization of Cost of 

Automatic Assembly System (Tandiono et al., 1994). An AAAS is a high speed production 

system containing a number of stations that are set in a predetermined order. The product 

starts at the first station and is processed at each subsequent station until it has been 
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processed on every machine. At that point the product is completed and is ready for the next 

stage in its production.  Being asynchronous, processing times at each station are not equal. 

When a particular operation is completed, the product moves to the next station. A buffer 

zone exists between the stations to allow the previous machine to keep running even if the 

following station hasn’t finished production. Since this is a closed loop system, the product is 

loaded onto a pallet at the first station and the finished product is unloaded at the final 

station. The empty pallet then returns to the first station. The two major items that can be 

adjusted and must to be optimized are the number of pallets in the system and the length of 

the buffers between stations. If the two are not set correctly, starvation and/or blocking can 

occur throughout the system. A diagram of this model can be seen in Appendix V – AAAS 

Model. Based on the work by Tondiono et al. (1994) the optimal setting for minimizing the 

cost function can be determined by: 

ef: conveyor length 

J: number of pallets 

gJ: total units produced during the simulation 

e[d�: total cost of a particular setup 

e[d� , 15000 0 �ef / 10� 0 0.1627 / 500 0 J 0 0.1627
/ 1500 0 �ef / 10� 0 10.2259 / 0.0314 0 �ef / 10�3
/ 15000 / 100 0 J 0 0.1 / 52 0 4 0 10 0 �2200 2 gJ� 

(3.13) 

3.2.2 Catalog Center Model 

The second model is based on a catalog center using the example model included in 

Simulation with Arena by Kelton et al. (2004). This model has calls arriving to a catalog 
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center where a number of representatives take the orders. The order must be filled by 

warehouse workers and the requested items must be loaded on a delivery truck. Once the 

entire order is shipped, a copy of the ticket is sent to the billing department and sales 

department where the invoice and future mailing lists are generated, respectively. A diagram 

of this model can be seen in Appendix VII – Catalog Center Model. The model’s optimal 

parameter settings are adjusted using the cost equation that follows: 

nop: number of customer that baulk 
e��O=): number of catalog representatives 

rsr: number of warehouse workers 

NO: number of truck drivers 

pe: number of scanners and operators 

eo: number of billing clerks 

nes: shipping batch size 

e[d�: total cost of a particular setup 

 

e[d� , 7500 0 �nop� / 60000 0 e��O=) / 45000 0 �rsr / NO / pe / eo� / 1000
0 4400 2 nop2160 / G4400 2 nopnes H 0 20 0 3000 

(3.14) 

 

3.2.3 Lamp Assembly System 

The third model that was analyzed is a lamp assembly line as described in work by 

Mo (2007). The twenty-one step, five-stage lamp supply chain is modeled using times and 

flows from Mo (2007), with an additional storage constraint limiting the total amount of 
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work in progress (WIP). The goal of this simulation is different from that described in the 

work by Mo; the objective is to maximize the profit of the system instead of minimizing the 

cost of WIP. A diagram of this model can be seen in Appendix IV – Lamp Model. The 

operating cost is calculated as follows: 

f�L)d: number of lamp assemblies created 
O=�Z��d: number of lamps returned to supplier 

uL)v[w==d: sum of all assembly employees 

xyg: the requested time between supply shipments 

J�[{�� , |���f�L)d, 5184� 0 500 2 3650 0 �O=�Z��d� 2 60000 0 uL)vw==d / 5184
2 f�L)d 2 31,553,600/xyg 

(3.15) 

3.2.4 Distribution Center Model 

The fourth model that was included is a ten-door, pallet-based, long-haul distribution 

center, with five incoming and five outgoing doors. The model attempts to determine the 

optimal door location and number of fork trucks in the system for this distribution center. A 

diagram of this model can be seen in Appendix VI – Distribution Center Model. The 

objective function is calculated as follows: 

ygxp: average time a shipment is in the system 
pXg: number of shipments that exceeded the maximum time allowed in the system 
M[�6: number of fork trucks 
M[�6d)==�: speed factor that allows increase movement from all fork trucks 
e[d�: total cost of a particular setup 
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e[d� , 12500 0 ygxp / 25 0 58.4 0 pXg / 20000 0 �M[�6� / 2000 0 M[�6d)==� 0 M[�6 

(3.16) 

3.2.5 Steady State 

Once the models were defined and created in Arena, steady state was evaluated to 

establish the appropriate warm-up time for the simulation. Once established, that number was 

increased by an arbitrary amount because as the different input parameters are changed, the 

time it takes to reach steady state could potentially increase. This process to determine time 

until steady state is described below:  

 

 

Figure 1 - Startup time for AAAS model. 

 

Steady state is described as the standard running condition of a particular process not 

influenced by start-up. In Figure 1 above, after three and a half hours of run time (marked by 

the black line) the system levels off and is in steady state. Then, to ensure that all variations 
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of this simulation were in steady state, a warm-up period of five hours was used (shown as 

the red line). 

3.3 PSO Model Development 

Once the models were created in Arena, the PSO algorithm was set up to control the 

algorithm, and update and control the Arena models. The adjustment and control of the 

Arena models was required in order to evaluate the objective function at different points in 

the design space. PSO was coded into Arena using Visual Basic because of the ease of 

adjusting the simulation model as needed by the algorithm. The PSO and pheromone PSO 

code for the AAAS model can be seen in their entirety in Appendix III and VI, respectively.   

The general form for the algorithm/simulation interaction implemented can be seen in 

Figure 2 below: 
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Figure 2 - Pheromone PSO flowchart 

 

Figure 2 shows that once a PSO algorithm was created as an object in the Arena model, it 

filled the role of the optimization package. It initially picks population parameters, populates 

them in the Arena model, and starts the Arena model running. When the model is finished 

running it writes the measured metrics to a text file which the PSO program uses to 

determine the next test location.  The convergence criterion for the algorithm is met when the 

algorithm completes the required number of iterations without a change to the global best 
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solution. When this happens, the algorithm stops. Otherwise, the algorithm sends the updated 

population parameters to the Arena model and the process is repeated until the convergence 

criterion is met. 

3.4 PSO vs. Pheromone PSO 

Linking Arena and Visual Basic, a comparison between PSO and pheromone PSO 

was made using the four models described in section 3.2. Standard levels derived from 

literature (El-Gallad et al. 2002, Zhang, et al. 2004 and Kalivarapu et al 2007) were used for 

the parameters in PSO; the values for these levels are shown in Table 1 on page 26. PSO and 

pheromone PSO results were compared using average solution quality and time to 

convergence, based on the number of calculations using the objective function. Objective 

function calculations were used as a measure of time to convergence because in optimizing 

simulations, the time it takes to run the simulations is orders of magnitude higher than the 

time it takes to run the rest of the optimization code. As shown in work by Kalivarapu 

(2008), even very complicated functions of up to 50 dimensions took less than 100 seconds 

to optimize using pheromone PSO, compared to 1200 seconds for a comparatively simple 

simulation model optimization.   

3.5 Parameter Optimization for Pheromone PSO 

In order to determine what parameters work best for pheromone PSO on stochastic 

problems, four simulations were used. These were used to optimize the input parameters of a 

pheromone PSO with weighted inertia. The results were used to tune the algorithm and 

compare the results of all the simulations to the results of OptQuest. OptQuest is a well-
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developed program that utilizes tabu search, scatter search, mixed integer programming and 

neural networks to optimize complex simulations and, according to Kleijnen (2006), sets a 

good bar for comparison to see if PSO is adept at solving stochastic optimization problems. 

The models were compared on three criteria: solution quality, consistency, and 

computational time.  

The PSO algorithm was tuned to solve stochastic optimization. All of the input 

parameters that can be adjusted must be studied. In this case, the simplest parameters are the 

size of the swarm, the number of iterations until convergence, and the maximum velocity. 

Additional parameters include the number of pheromones dropped in the first iteration, the 

decay rate of the pheromone field, and values of the coefficients associated with global best, 

personal best, and pheromone selected (alternatively known as c1, c2, and c3, respectively). 

From previous literature, there are predetermined parameter values that are normally used. 

These, as well as a range of acceptable values, can be seen in Table 1: 
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Table 1 - Parameter ranges and standard values 

Parameter Minimum 

Value 

Standard 

Value 

Maximum 

Value 

Units 

c1 1 2 4 NA 

c2 1 2 4 NA 

c3 1 4 6 NA 

Weighted inertia 

factor 

1% 5% 25% Percentage decrease 

Pheromone 

decay factor 

1% 5% 25% Percentage decrease 

Pheromones 

dropped during 

first iteration 

20% 50% 100% Percentage released 

Maximum 

velocity 

20% 80% 100% Percentage of variable 
range 

Swarm size 10 30 50 Number of members 

Iterations until 

convergence  

10 20 50 Number of iterations 
without an improving 
solution 

 

These parameters were run five times at each incremental adjustment of the variable, 

and the results from the optimization algorithm were recorded into data sets to show how the 

algorithm behaved as the parameters were adjusted. 

3.6 Modifications of Pheromone PSO 

While pheromone PSO is a well developed algorithm, there are a number of 

modifications to the initialization of the algorithm that have the potential to increase its 

consistency and speed. These modifications include using an orthogonal array to set the 

particles’ starting locations and allowing only the good particles to drop pheromones.  
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3.6.1 Pheromone Release Modification 

Pheromone release during the first iteration was initially set to allow each particle a 

50% chance of releasing a pheromone. This was done to allow a thorough exploration of the 

solution space. The modification tested was to only allow particles that have an objective 

function value within some percentage of the global best value to drop pheromones. This 

ensures that only areas of the solution space that are relatively good compared to the current 

global best have a pheromone dropped in them. While this biases the search direction toward 

the area of the search space where good solutions were found, it has the potential to decrease 

the time to convergence. 

3.6.2 Orthogonal Arrays 

Orthogonal arrays were developed in statistics as a systematic way of setting test 

levels for variables in a problem. In an orthogonal array, each vector is designed to be 

perpendicular to every other vector, and conveys unique information about the test to avoid 

redundancy in testing. This concept was used to set the starting location for PSO. For the 

selected problems, the largest number of variables is thirteen. By setting each decision 

variable to three levels (the minimum, the mean, and the maximum), an L27 array can be 

used to contain the problem. This array size works well for PSO applications because 27, the 

number of tests needed to define the thirteen variables at three levels, is close to the standard 

value for the number of particles in a swarm. A list of the vectors for the thirteen variables 

and three levels can be found in Appendix 1. 
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CHAPTER 4. RESULTS 

4.1 Overview of Results 

 Once pheromone PSO was shown to be a constructive addition to PSO, the different 

parameters were adjusted to see what levels were appropriate. Once the levels were 

determined, two modifications to PSO were implemented: using orthogonal arrays to 

determine particle starting locations, and biasing pheromone dropping based on the objective 

function value. 

4.2 PSO vs. Pheromone PSO 

 To see if pheromone PSO was a good addition to PSO, the results of the standard 

PSO algorithm were compared to those of the pheromone PSO algorithm. The results of 

these comparisons are shown below for all four models: 

 

Figure 3 - Comparison between PSO and pheromone PSO on the lamp model. 
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Figure 4 - Comparison between PSO and pheromone PSO on AAAS model. 

 

 

Figure 5 - Comparison between PSO and pheromone PSO on catalog center model. 
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Figure 6 - Comparison between PSO and pheromone PSO on distribution center model. 
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shown below, with brief discussion of the resultant trends, the additional graphs can be seen 

in Appendix IX – Parameter Adjustment. 

 

Figure 7 - Effect of adjusting swarm size on distribution center model. 
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Figure 8 - Effect of adjusting convergence criterion on AAAS model. 
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Figure 9 - Effect of adjusting C1 and C2 on distribution center model. 
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Figure 10 - Effect of adjusting C3 on AAAS model. 
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Figure 11 - Effect of adjusting pheromone release rate on lamp model. 
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Figure 12 - Effect of adjusting pheromone decay factor on lamp model. 
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Figure 13 - Effect of adjusting weighted inertia factor on distribution center model. 
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objective function value and the number of objective function calculations. As shown in 

Figure 13, there was not a clear trend on the effect of adjusting the weighted inertia factor. In 

the AAAS model and the catalog center models, a value of 0.9 performed well. 

 

Figure 14 - Effect of adjusting maximum velocity allowed on lamp model. 
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Figure 14 shows the effect that adjusting the maximum velocity allowed had on the 

objective function value and the number of objective function calculations. As shown in 

Figure 14, there was not a clear trend on the effect of adjusting the maximum velocity 

allowed, as there are local minima around 0.25, 0.7 and 0.95. A maximum velocity allowance 

of 95% appears to be the best of that subset, with neighboring points also being good 

solutions. 

4.3.2 Summarizing Parameter Effects 

Based on the data collected from all four models for the nine control parameters for 

PSO, the settings that work well for the tested models are described in Table 2 :  

 

Table 2 - Tuned parameter levels 

Parameter Standard Value Tuned Level Units 

c1 2 1.75 NA 

c2 2 1.75 NA 

c3 4 3.75 NA 

Weighted inertia 

factor 

5% 10% Percentage decrease 

Pheromone 

decay factor 

5% 7.5% Percentage decrease 

Pheromones 

dropped during 

first iteration 

50% 47.5% Percentage of global 
best 

Maximum 

velocity 

80% 95% Percentage of variable 
range 

Swarm size 30 25 Number of members 

Iterations until 

convergence  

20 23 Number of iterations 
without an improving 
solution 
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4.3.3 Testing PSO vs. OptQuest 

The settings from the previous section were used to compare the speed and quality of 

solutions from pheromone PSO to those of the commercial optimization software, OptQuest. 

Each sample point was run ten times and the average was used to calculate the objective 

function value.  The results from these tests are shown in the graphs that follow: 

 

Figure 15- Minimization of AAAS using OptQuest vs. pheromone PSO. 

 

As the above graph clearly shows, the PSO algorithm outperformed the OptQuest 

model on the AAAS model; PSO converged to a solution that was 39,000 units lower 
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Figure 16 - Maximization of lamp model using OptQuest vs. pheromone PSO. 

As illustrated by the graph above, the PSO algorithm outperformed the OptQuest 

model on the lamp model; PSO converged to a solution that had a total profit of 929,005 

units higher than that of OptQuest (1,674,900 units vs. 745,895 units), or a 124% increase.  

 

Figure 17 - Minimization of distribution center model using OptQuest vs. pheromone PSO. 

100000

300000

500000

700000

900000

1100000

1300000

1500000

1700000

0 200 400 600 800 1000 1200 1400

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Maximization of Lamp Model using 

OptQuest vs. Pheromone PSO

PSO

OptQuest

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 200 400 600 800 1000 1200 1400

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Minimization of Distribution Center Model 

using OptQuest vs. Pheromone PSO

PSO

OptQuest



www.manaraa.com

41 
 

 

In the comparison of OptQuest vs. pheromone PSO on the distribution center model, 

a few modifications to the model were necessary to allow OptQuest to adjust the door 

locations. The adapted model was used for both tests, and the optimization runs were then 

compared. The graph above shows that PSO outperformed OptQuest on optimizing the 

distribution center model; PSO converged to a solution that had a total profit of 689,281 units 

lower than that of OptQuest (1,519,528 units vs. 830,247 units), or a 45% decrease. 

Attempting to solve this model also exposed a limitation to OptQuest: OptQuest only 

recognizes resources and variables as controls that can be adjusted in its optimization. This 

increased flexibility is an additional benefit to using direct coding approach to control and 

heuristically optimize the decision variables in the simulation. 

 

 

Figure 18 - Minimization of catalog center using OptQuest vs. pheromone PSO. 

 

12000000

13000000

14000000

15000000

16000000

17000000

18000000

0 100 200 300 400 500 600

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Minimization of Catalog Center using 

OptQuest vs. Pheromone PSO

PSO

OptQuest



www.manaraa.com

42 
 

In the graph above, PSO algorithm performed slightly better than OptQuest on the 

catalog center model; PSO converged to a solution that had a total cost 185,240 units lower 

than OptQuest (12,620,760 units vs. 12,806,000 units), or a 1.4% decrease.  

These tests show that, for the models tested, pheromone PSO was able to find a better 

solution than an OptQuest model in the same number of objective function calculations. 

Although, only in the lamp model can the solution be shown as statistically different. 

4.4 Modification using Orthogonal Arrays and Biased Starting 

Location 

The final experiment tested was to see if two modifications to the algorithm could 

improve the solution quality and/or decrease the time to convergence. These changes were 

made in all four models, and the results from the tests are shown below: 

 

Figure 19 - Effects of modifications to pheromone PSO on number of objective function calculations for lamp model. 
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Figure 20 - Effects of modifications to pheromone PSO on maximization of objective function for lamp model. 
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Figure 21 - Effects of modifications to pheromone PSO on number of objective function calculations for AAAS 

model. 

 

 

Figure 22 - Effects of modifications to pheromone PSO on minimization of objective function for AAAS model. 
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algorithm converged in the shortest amount of time and to the best solution. It is noteworthy 

that when using a 95% C.I. there is not a statistical difference between the orthogonal test 

and the pheromone tests. An example of the statistical comparison can be seen in Appendix 

VIII. 

 

Figure 23 - Effects of modifications to pheromone PSO on number of objective function calculations for catalog 

center model. 
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Figure 24 - Effects of modifications to pheromone PSO on minimization of objective function for catalog center 

model. 
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Figure 25 - Effects of modifications to pheromone PSO on number of objective function calculations for distribution 

center model. 

 

 

Figure 26 - Effects of modifications to pheromone PSO on minimization of objective function for distribution center 

model. 
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pheromones had the best average solution. There is not a statistical difference between the 

four tests. 

4.4.1 Summary of Comparison 

As illustrated by Figure 19 – Figure 26, utilizing orthogonal arrays and biasing the 

release of pheromones to particles that have a comparatively good objective function value 

has a positive impact on the quality of the solution for some models. In none of the cases was 

the objective function in one method found to be statistically different and better than 

pheromone PSO with random particles releasing pheromones. There was no clear best 

method displaying a consistent best time to convergence. Three of the methods had the 

smallest number of objective function calculations on at least one of the models tested. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

This paper tested three items: the performance of pheromone PSO vs. PSO, the 

performance of pheromone PSO vs. OptQuest, and the performance benefit of algorithm 

adjustments. This paper showed that adding digital pheromones to PSO is a constructive 

addition to PSO. Pheromone PSO was compared to OptQuest, and pheromone PSO was able 

to outperform on all models compared. This highlights the robustness of the algorithm. An 

additional benefit that pheromone PSO had over OptQuest was that pheromone PSO was 

able to use more controls as decision variables. OptQuest only allows users to adjust resource 

levels and variables as decision variables, whereas with proper coding in pheromone PSO, an 

additional production line can be added as a decision variable. Finally, two modifications that 

adjusted the start of the algorithm were tested, and it was shown that these modifications 

were not able to consistently benefit the algorithm.  

Possible extensions of this paper include testing more models to see if the same trends 

hold true and testing how pheromone PSO works on models with more than 50 variables. 

Additionally, testing the functionality and usability of using pheromone PSO to control major 

adjustments to modeled production systems could prove beneficial, such as in cases where 

complete revisions to production lines are decision variables. These tests would give more 

insight on the performance of pheromone PSO with different problem types. 
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APPENDIX I – L27 ARRAY 

Table 3 - L27 array from The University of York  

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 2 2 2 2 2 2 

3 1 1 1 1 3 3 3 3 3 3 3 3 3 

4 1 2 2 2 1 1 1 2 2 2 3 3 3 

5 1 2 2 2 2 2 2 3 3 3 1 1 1 

6 1 2 2 2 3 3 3 1 1 1 2 2 2 

7 1 3 3 3 1 1 1 3 3 3 2 2 2 

8 1 3 3 3 2 2 2 1 1 1 3 3 3 

9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 

11 2 1 2 3 2 3 1 2 3 1 2 3 1 

12 2 1 2 3 3 1 2 3 1 2 3 1 2 

13 2 2 3 1 1 2 3 2 3 1 3 1 2 

14 2 2 3 1 2 3 1 3 1 2 1 2 3 

15 2 2 3 1 3 1 2 1 2 3 2 3 1 

16 2 3 1 2 1 2 3 3 1 2 2 3 1 

17 2 3 1 2 2 3 1 1 2 3 3 1 2 

18 2 3 1 2 3 1 2 2 3 1 1 2 3 

19 3 1 3 2 1 3 2 1 3 2 1 3 2 

20 3 1 3 2 2 1 3 2 1 3 2 1 3 

21 3 1 3 2 3 2 1 3 2 1 3 2 1 

22 3 2 1 3 1 3 2 2 1 3 3 2 1 

23 3 2 1 3 2 1 3 3 2 1 1 3 2 

24 3 2 1 3 3 2 1 1 3 2 2 1 3 

25 3 3 2 1 1 3 2 3 2 1 2 1 3 

26 3 3 2 1 2 1 3 1 3 2 3 2 1 

27 3 3 2 1 3 2 1 2 1 3 1 3 2 
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APPENDIX II – SAMPLE CODE PHEROMONE PSO 

Sub Pheromone PSO() 
 
Dim Xmin(10) As Integer 'Array for Minimum control values 
Dim Xmax(10) As Integer 'Array for Minimum control values 
Dim X(100, 10) As Integer 'Array for each particles current control values 
Dim F(100) As Double 'Objective Function Value for each particle 
Dim V(100, 10, 1) As Single 'Current and last iterations velocity for each particle, 
Dim Pbest(100, 11) As Single 'personal best location for each particle(P(i,0-10)) and 
personal best objective function (P(i,11)) 
Dim Pheromone(1000, 11) As Single 'location (Pheromone(i,0-10)) and strength 
(Pheromone(i,11))of pheromone field 
Dim Gbestpoint(10) As Single 'Gbest location 
Dim Gbest As Single 'Global best objective function value 
Dim c As Integer ' convergence iteration counter 
Dim w As Single ' weighted Inertia starting value 
Dim PST As Single 'Target Pheromone's Strength 
Dim PS As Single 'Pheromone Strength 
Dim TP As Integer 'Target Pheromone 
Dim count As Integer 'total iteration counter, counting 0 
Dim phr As Single 'Percent of objective in which Pheromones are released 
Dim RLF As Single 'Range Limit Factor 
Dim pdf As Single ' Pheromone Decay Factor 
Dim WIF As Single 'Weighted inertia factor 
Dim ConCrit As Integer ' Number of interations until convergence 
Dim c1 As Single 'weighted factor for global best influence 
Dim c2 As Single 'weighted factor for personal best influence 
Dim c3 As Single 'weighted factor for pheromone field influence 
Dim N As Integer 'Number of Particles, maximum of 100 allowed based on arrays defined 
earlier 
Dim modelout As String 'data extracted from text file from arena 
Dim Starttime As String ' Start time of the program 
Dim Finishtime As String 'Completion time of the program 
Dim Cp As Single 'variable to compute objective function 
Dim Cf As Single 'variable to compute objective function 
Dim CC As Single 'variable to compute objective function 
Dim Ch As Single 'variable to compute objective function 
Dim Cg As Single 'variable to compute objective function 
Dim i As Integer 'counter 
Dim j As Integer 'counter 
Dim k As Integer 'counter 
Dim l As Integer 'counter 
Dim p As Integer 'counter for total number of pheromones in the system 
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'Dimension the variable m as a model object 

Dim m As Model 
Dim m1 As Model 
Dim m2 As Model 
Dim m3 As Model 
Dim m4 As Model 
Dim m5 As Model 
Dim m6 As Model 
Dim m7 As Model 
Dim m8 As Model 
Dim m9 As Model 
Dim m10 As Model 
 
'Set m equal to this models object 

Set m = ActiveModel 
 
'm1-m10 are used to define various submodels in the program 
Set m1 = m.Submodels(m.Submodels.Find(smFindTag, "object.S1")).Model 
Set m2 = m.Submodels(m.Submodels.Find(smFindTag, "object.S2")).Model 
Set m3 = m.Submodels(m.Submodels.Find(smFindTag, "object.S3")).Model 
Set m4 = m.Submodels(m.Submodels.Find(smFindTag, "object.S4")).Model 
Set m5 = m.Submodels(m.Submodels.Find(smFindTag, "object.S5")).Model 
Set m6 = m.Submodels(m.Submodels.Find(smFindTag, "object.S6")).Model 
Set m7 = m.Submodels(m.Submodels.Find(smFindTag, "object.S7")).Model 
Set m8 = m.Submodels(m.Submodels.Find(smFindTag, "object.S8")).Model 
Set m9 = m.Submodels(m.Submodels.Find(smFindTag, "object.S9")).Model 
Set m10 = m.Submodels(m.Submodels.Find(smFindTag, "object.S10")).Model 
Model.QuietMode = True 
 
'Set start time of model 

    Starttime = Format(Time, "Long Time") 
     
'Set starting values for various parameters 

    RLF = 1 
    phr = 0.5 
    pdf = 0.95 
    c1 = 2 
    c2 = 2 
    c3 = 4 
    WIF = 0.95 
    ConCrit = 5 
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    count = 0 
    c = 1 
    w = 1 
    p = 0 
     
'Enter population size less than or equal to 100 

    N = 20 
     
'Set starting Gbest value as a large value for minimization problem 

    Gbest = 100000000 
     
'Set min and max values for all model controls 

    Xmax(0) = 80 
    Xmin(0) = 1 
    Xmax(1) = 8 
    Xmin(1) = 1 
    Xmax(2) = 8 
    Xmin(2) = 1 
    Xmax(3) = 8 
    Xmin(3) = 1 
    Xmax(4) = 8 
    Xmin(4) = 1 
    Xmax(5) = 8 
    Xmin(5) = 1 
    Xmax(6) = 8 
    Xmin(6) = 1 
    Xmax(7) = 8 
    Xmin(7) = 1 
    Xmax(8) = 8 
    Xmin(8) = 1 
    Xmax(9) = 8 
    Xmin(9) = 1 
    Xmax(10) = 8 
    Xmin(10) = 1 
 
'Set the starting value for all particles as a random location between controls 

minimum and maximum 

    For i = 0 To N 
        For j = 0 To 10 
            X(i, j) = Xmin(j) + Rnd() * (Xmax(j) - Xmin(j)) 
        Next 
    Next 
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'Calculate the objective function for all particles 

    For i = 0 To N 
'Based on particles location, adjusts controls in Arena 

 m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2 
Process.Queue) < " & X(i, 1) 
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3 
Process.Queue) < " & X(i, 2) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4 
Process.Queue) < " & X(i, 3) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5 
Process.Queue) < " & X(i, 4) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6 
Process.Queue) < " & X(i, 5) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7 
Process.Queue) < " & X(i, 6) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8 
Process.Queue) < " & X(i, 7) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9 
Process.Queue) < " & X(i, 8) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10 
Process.Queue) < " & X(i, 9) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1 
Process.Queue) < " & X(i, 10) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10) 
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0) 
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
 
'runs the model 

            m.Go 
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'Waits until the model is finished running 

If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication 
Then m.End 
End If 
 

'Collected output data from text files and sets as modelout 

        Open "C:\ AASOutput.txt" For Input As #1 
           Line Input #1, modelout 
        Close #1 
'Based on results from model calculates objective function 

        Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the 
pallets over 10 years 
        ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) + 
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10))) 
        Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength + 
10))) 
        CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that 
spreads the cost of the pallets over 10 years 
        Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1 
        Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is a 6 second cycle time, and $10 
per unit 
         
        F(i) = Cp + Cf + CC + Ch + Cg 
 
'Since this is the first iteration sets the current location as the particles best 

location 

        Pbest(i, 11) = F(i) 
        Pbest(i, 0) = X(i, 0) 
        Pbest(i, 1) = X(i, 1) 
        Pbest(i, 2) = X(i, 2) 
        Pbest(i, 3) = X(i, 3) 
        Pbest(i, 4) = X(i, 4) 
        Pbest(i, 5) = X(i, 5) 
        Pbest(i, 6) = X(i, 6) 
        Pbest(i, 7) = X(i, 7) 
        Pbest(i, 8) = X(i, 8) 
        Pbest(i, 9) = X(i, 9) 
        Pbest(i, 10) = X(i, 10) 
'Checks to see if this particles current location is better than the current global 

best, if it is better sets current particles location as gbest 

        If Pbest(i, 11) < Gbest Then 
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            Gbest = Pbest(i, 11) 
            Gbestpoint(0) = X(i, 0) 
            Gbestpoint(1) = X(i, 1) 
            Gbestpoint(2) = X(i, 2) 
            Gbestpoint(3) = X(i, 3) 
            Gbestpoint(4) = X(i, 4) 
            Gbestpoint(5) = X(i, 5) 
            Gbestpoint(6) = X(i, 6) 
            Gbestpoint(7) = X(i, 7) 
            Gbestpoint(8) = X(i, 8) 
            Gbestpoint(9) = X(i, 9) 
            Gbestpoint(10) = X(i, 10) 
'Records in a test file when a new gbest is found 

            Open "C:\ModelRun.txt" For Append As #1 
                Print #1, "New G Best"; Tab; count; Tab; Gbest 
            Close #1 
        End If 
    Next 
     
'Random drops pheromones for (PHR)% of the population 

    For i = 0 To N 
        If Rnd() < phr Then 
            'drop pheromone 
            Pheromone(p, 0) = X(i, 0) 
            Pheromone(p, 1) = X(i, 1) 
            Pheromone(p, 2) = X(i, 2) 
            Pheromone(p, 3) = X(i, 3) 
            Pheromone(p, 4) = X(i, 4) 
            Pheromone(p, 5) = X(i, 5) 
            Pheromone(p, 6) = X(i, 6) 
            Pheromone(p, 7) = X(i, 7) 
            Pheromone(p, 8) = X(i, 8) 
            Pheromone(p, 9) = X(i, 9) 
            Pheromone(p, 10) = X(i, 10) 
            'pheromone strength 
            Pheromone(p, 11) = 1 
'Marks counter p that another pheromone has been dropped 

            p = p + 1 
        End If 
    Next 
'Sets the starting velocity for all particles as 0 

    For i = 0 To N 



www.manaraa.com

62 
 

        For j = 0 To 10 
            V(i, j, 0) = 0 
        Next 
    Next 
'This completes the start up of the algorithm 

 
'Algorithm then continues until ConCrit number of iterations pass without a 

change in the objective function value 

    Do Until c > ConCrit 
'Updates iterations counters 

        count = count + 1 
        c = c + 1 
'Sets target pheromones for all particles 

        For i = 0 To N 
            PS = 0 
            PST = -1000 
            For j = 0 To p - 1 
'Calculates the -distance*strength between each particle and each pheromone 

                PS = (1 - ((X(i, 0) - Pheromone(j, 0)) ^ 2 + (X(i, 1) - Pheromone(j, 1)) ^ 2 + (X(i, 
2) - Pheromone(j, 2)) ^ 2 + (X(i, 3) - Pheromone(j, 3)) ^ 2 + (X(i, 4) - Pheromone(j, 4)) ^ 2 + 
(X(i, 5) - Pheromone(j, 5)) ^ 2 + (X(i, 6) - Pheromone(j, 6)) ^ 2 + (X(i, 7) - Pheromone(j, 7)) 
^ 2 + (X(i, 8) - Pheromone(j, 8)) ^ 2 + (X(i, 9) - Pheromone(j, 9)) ^ 2 + (X(i, 10) - 
Pheromone(j, 10)) ^ 2) ^ 0.5) * Pheromone(j, 11) 
'If a pheromone is found to have a better strength it is selected as the target 

pheromone 

                If PS > PST Then 
                    PST = PS 
                    TP = j 
                End If 
            Next 
'Updates the velocity vector 

            For j = 0 To 10 
                V(i, j, 1) = w * V(i, j, 0) + c1 * Rnd() * (Pbest(i, 1) - X(i, j)) + c2 * Rnd() * 
(Gbestpoint(j) - X(i, j)) + c3 * Rnd() * (Pheromone(TP, j) - X(i, j)) 
'If velocity is greater than the variable range * RLF, the velocity is set to the 

variable range * RLF 

                If V(i, j, 1) > (Xmax(j) - Xmin(j) * RLF) Then 
                    V(i, j, 1) = (Xmax(j) - Xmin(j) * RLF) 
                End If 
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'If velocity is less than the variable range * RLF, the velocity is set to the 

variable range * RLF 

                If V(i, j, 1) < -(Xmax(j) - Xmin(j) * RLF) Then 
                    V(i, j, 1) = -(Xmax(j) - Xmin(j) * RLF) 
                End If 
                V(i, j, 0) = V(i, j, 1) 
            Next 
        Next 
'Adjusts particles position based on velocity 

        For i = 0 To N 
            For j = 0 To 10 
                X(i, j) = X(i, j) + V(i, j, 1) 
                If X(i, j) < Xmin(j) Then 
                    X(i, j) = Xmin(j) 
                End If 
            Next 
        Next 
         
For i = 0 To N 
'Based on particles location, adjusts controls in Arena 

m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2 
Process.Queue) < " & X(i, 1) 
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3 
Process.Queue) < " & X(i, 2) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4 
Process.Queue) < " & X(i, 3) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5 
Process.Queue) < " & X(i, 4) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6 
Process.Queue) < " & X(i, 5) 
 m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7 
Process.Queue) < " & X(i, 6) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8 
Process.Queue) < " & X(i, 7) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9 
Process.Queue) < " & X(i, 8) 
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m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10 
Process.Queue) < " & X(i, 9) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1 
Process.Queue) < " & X(i, 10) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10) 
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0) 
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
'Runs the model 

            m.Go 
'Waits until the model is finished running 

 If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then  
m.End 

End If 
'Collected output data from text files and sets as modelout 

        Open "C:\Thesis\AASOutput.txt" For Input As #1 
           Line Input #1, modelout 
        Close #1 
'Based on results from model calculates objective function 

        Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the 
pallets over 10 years 
        ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) + 
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10))) 
        Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength + 
10))) 
        CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that 
spreads the cost of the pallets over 10 years 
        Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1 
        Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is an 6 second cycle time, and $10 
per unit 
         
        F(i) = Cp + Cf + CC + Ch + Cg 
 
            'If the current particles location is greater than that particles personal 

best and particle is feasible, then pbest is updated 

            If F(i) < Pbest(i, 11) Then 
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                For j = 0 To 10 
                     
                    'Checks if current particle is feasible 

                    If X(i, j) > Xmax(j) Then 
                        Exit For 
                    End If 
                    If X(i, j) < Xmin(j) Then 
                        Exit For 
                    End If 
                    If j = 10 Then 
                        Pbest(i, 11) = F(i) 
                        Pbest(i, 0) = X(i, 0) 
                        Pbest(i, 1) = X(i, 1) 
                        Pbest(i, 2) = X(i, 2) 
                        Pbest(i, 3) = X(i, 3) 
                        Pbest(i, 4) = X(i, 4) 
                        Pbest(i, 5) = X(i, 5) 
                        Pbest(i, 6) = X(i, 6) 
                        Pbest(i, 7) = X(i, 7) 
                        Pbest(i, 8) = X(i, 8) 
                        Pbest(i, 9) = X(i, 9) 
                        Pbest(i, 10) = X(i, 10) 
                         
                    'A pheromone is release each time a particle finds a new p best 

                        Pheromone(p, 0) = X(i, 0) 
                        Pheromone(p, 1) = X(i, 1) 
                        Pheromone(p, 2) = X(i, 2) 
                        Pheromone(p, 3) = X(i, 3) 
                        Pheromone(p, 4) = X(i, 4) 
                        Pheromone(p, 5) = X(i, 5) 
                        Pheromone(p, 6) = X(i, 6) 
                        Pheromone(p, 7) = X(i, 7) 
                        Pheromone(p, 8) = X(i, 8) 
                        Pheromone(p, 9) = X(i, 9) 
                        Pheromone(p, 10) = X(i, 10) 
                         
                    'Pheromone strength 

                        Pheromone(p, 11) = 1 
                        p = p + 1 
                         
                        'If the current location is also better then Global best, gbest is 

updated 
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                            If Pbest(i, 11) < Gbest Then 
                                 
                                'Convergence criterion counter is updated 

                                c = 1 
                                Gbest = Pbest(i, 11) 
                                Gbestpoint(0) = X(i, 0) 
                                Gbestpoint(1) = X(i, 1) 
                                Gbestpoint(2) = X(i, 2) 
                                Gbestpoint(3) = X(i, 3) 
                                Gbestpoint(4) = X(i, 4) 
                                Gbestpoint(5) = X(i, 5) 
                                Gbestpoint(6) = X(i, 6) 
                                Gbestpoint(7) = X(i, 7) 
                                Gbestpoint(8) = X(i, 8) 
                                Gbestpoint(9) = X(i, 9) 
                                Gbestpoint(10) = X(i, 10) 
                                 
                                'Prints current solution to file 

                                Open "C:\ModelRun.txt" For Append As #1 
                                     Print #1, "New G Best"; Tab; count; Tab; Gbest 
                                Close #1 
                            End If 
                    End If 
                Next 
            End If 
        Next 
         
    'Before the start of the next iteration the pheromone field is decayed 

        For k = 0 To p 
            Pheromone(k, 11) = Pheromone(k, 11) * pdf 
        Next 
     
    'Merges pheromones together if they are effectively overlapping 

        For k = 0 To p 
            For l = k To p 
                If k <> l Then 

If ((Pheromone(k, 0) - Pheromone(l, 0)) ^ 2 + (Pheromone(k, 1) - 
Pheromone(l, 1)) ^ 2 + (Pheromone(k, 2) - Pheromone(l, 2)) ^ 2 + 
(Pheromone(k, 3) - Pheromone(l, 3)) ^ 2 + (Pheromone(k, 4) - Pheromone(l, 
4)) ^ 2 + (Pheromone(k, 5) - Pheromone(l, 5)) ^ 2 + (Pheromone(k, 6) - 
Pheromone(l, 6)) ^ 2 + (Pheromone(k, 7) - Pheromone(l, 7)) ^ 2 + 
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(Pheromone(k, 8) - Pheromone(l, 8)) ^ 2 + (Pheromone(k, 9) - Pheromone(l, 
9)) ^ 2 + (Pheromone(k, 10) - Pheromone(l, 10)) ^ 2) ^ 0.5 < 2 Then 

                        Pheromone(k, 11) = (Pheromone(k, 11) + Pheromone(l, 11)) / 2 
                        Pheromone(l, 11) = 0 
                    End If 
                End If 
            Next 
        Next 
     
    'Reduced weighted inertia factor and then optimization is continued until 

convergence 

        w = w * WIF 
    Loop 
'Once the convergence criterion, the finish time is recorded 

Finishtime = Format(Time, "Long Time") 
'Run statistics and best solution found is recorded to a file 

Open "C:\OptimalOut.txt" For Append As #1 
    Print #1, "Run length of " & count  
    Print #1, Gbest 
    Print #1, Gbestpoint(0) 
    Print #1, Gbestpoint(1) 
    Print #1, Gbestpoint(2) 
    Print #1, Gbestpoint(3) 
    Print #1, Gbestpoint(4) 
    Print #1, Gbestpoint(5) 
    Print #1, Gbestpoint(6) 
    Print #1, Gbestpoint(7) 
    Print #1, Gbestpoint(8) 
    Print #1, Gbestpoint(9) 
    Print #1, Gbestpoint(10) 
    Print #1, Starttime 
    Print #1, Finishtime 
Close #1 
 
End Sub 
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APPENDIX III – SAMPLE CODE PSO 

Sub PSO() 
 
Dim Xmin(10) As Integer 'Array for Minimum control values 
Dim Xmax(10) As Integer 'Array for Minimum control values 
Dim X(100, 10) As Integer 'Array for each particles current control values 
Dim F(100) As Double 'Objective Function Value for each particle 
Dim V(100, 10, 1) As Single 'Current and last iterations velocity for each particle, 
Dim Pbest(100, 11) As Single 'personal best location for each particle(P(i,0-10)) and 
personal best objective function (P(i,11)) 
Dim Gbestpoint(10) As Single 'Gbest location 
Dim Gbest As Single 'Global best objective function value 
Dim c As Integer ' convergence iteration counter 
Dim w As Single ' weighted Inertia starting value 
Dim count As Integer 'total iteration counter, counting 0 
Dim RLF As Single 'Range Limit Factor 
Dim WIF As Single 'Weighted inertia factor 
Dim ConCrit As Integer ' Number of interations until convergence 
Dim c1 As Single 'weighted factor for global best influence 
Dim c2 As Single 'weighted factor for personal best influence 
Dim c3 As Single 'weighted factor for pheromone field influence 
Dim N As Integer 'Number of Particles, maximum of 100 allowed based on arrays defined 
earlier 
Dim modelout As String 'data extracted from text file from arena 
Dim Starttime As String ' Start time of the program 
Dim Finishtime As String 'Completion time of the program 
Dim Cp As Single 'variable to compute objective function 
Dim Cf As Single 'variable to compute objective function 
Dim CC As Single 'variable to compute objective function 
Dim Ch As Single 'variable to compute objective function 
Dim Cg As Single 'variable to compute objective function 
Dim i As Integer 'counter 
Dim j As Integer 'counter 
Dim k As Integer 'counter 
Dim l As Integer 'counter 
 
'Dimension the variable m as a model object 

Dim m As Model 
Dim m1 As Model 
Dim m2 As Model 
Dim m3 As Model 
Dim m4 As Model 
Dim m5 As Model 
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Dim m6 As Model 
Dim m7 As Model 
Dim m8 As Model 
Dim m9 As Model 
Dim m10 As Model 
 
'Set m equal to this models object 

Set m = ActiveModel 
 
'm1-m10 are used to define various submodels in the program 
Set m1 = m.Submodels(m.Submodels.Find(smFindTag, "object.S1")).Model 
Set m2 = m.Submodels(m.Submodels.Find(smFindTag, "object.S2")).Model 
Set m3 = m.Submodels(m.Submodels.Find(smFindTag, "object.S3")).Model 
Set m4 = m.Submodels(m.Submodels.Find(smFindTag, "object.S4")).Model 
Set m5 = m.Submodels(m.Submodels.Find(smFindTag, "object.S5")).Model 
Set m6 = m.Submodels(m.Submodels.Find(smFindTag, "object.S6")).Model 
Set m7 = m.Submodels(m.Submodels.Find(smFindTag, "object.S7")).Model 
Set m8 = m.Submodels(m.Submodels.Find(smFindTag, "object.S8")).Model 
Set m9 = m.Submodels(m.Submodels.Find(smFindTag, "object.S9")).Model 
Set m10 = m.Submodels(m.Submodels.Find(smFindTag, "object.S10")).Model 
Model.QuietMode = True 
 
'Set start time of model 

    Starttime = Format(Time, "Long Time") 
     
'Set starting values for various parameters 

    RLF = 1 
    c1 = 2 
    c2 = 2 
    c3 = 4 
    WIF = 0.95 
    ConCrit = 5 
    count = 0 
    c = 1 
    w = 1 
    p = 0 
     
'Enter population size less than or equal to 100 

    N = 20 
     
'Set starting Gbest value as a large value for minimization problem 

    Gbest = 100000000 



www.manaraa.com

70 
 

     
'Set min and max values for all model controls 

    Xmax(0) = 80 
    Xmin(0) = 1 
    Xmax(1) = 8 
    Xmin(1) = 1 
    Xmax(2) = 8 
    Xmin(2) = 1 
    Xmax(3) = 8 
    Xmin(3) = 1 
    Xmax(4) = 8 
    Xmin(4) = 1 
    Xmax(5) = 8 
    Xmin(5) = 1 
    Xmax(6) = 8 
    Xmin(6) = 1 
    Xmax(7) = 8 
    Xmin(7) = 1 
    Xmax(8) = 8 
    Xmin(8) = 1 
    Xmax(9) = 8 
    Xmin(9) = 1 
    Xmax(10) = 8 
    Xmin(10) = 1 
 
'Set the starting value for all particles as a random location between controls 

minimum and maximum 

    For i = 0 To N 
        For j = 0 To 10 
            X(i, j) = Xmin(j) + Rnd() * (Xmax(j) - Xmin(j)) 
        Next 
    Next 
'Calculate the objective function for all particles 

    For i = 0 To N 
'Based on particles location, adjusts controls in Arena 

 m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2 
Process.Queue) < " & X(i, 1) 
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3 
Process.Queue) < " & X(i, 2) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2) 
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m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4 
Process.Queue) < " & X(i, 3) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5 
Process.Queue) < " & X(i, 4) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6 
Process.Queue) < " & X(i, 5) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7 
Process.Queue) < " & X(i, 6) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8 
Process.Queue) < " & X(i, 7) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9 
Process.Queue) < " & X(i, 8) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10 
Process.Queue) < " & X(i, 9) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1 
Process.Queue) < " & X(i, 10) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10) 
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0) 
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
 
'runs the model 

            m.Go 
 
'Waits until the model is finished running 

If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then  
m.End 

 
End If 

 
'Collected output data from text files and sets as modelout 

        Open "C:\ AASOutput.txt" For Input As #1 
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           Line Input #1, modelout 
        Close #1 
'Based on results from model calculates objective function 

        Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the 
pallets over 10 years 
        ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) + 
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10))) 
        Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength + 
10))) 
        CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that 
spreads the cost of the pallets over 10 years 
        Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1 
        Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is a 6 second cycle time, and $10 
per unit 
         
        F(i) = Cp + Cf + CC + Ch + Cg 
 
'Since this is the first iteration sets the current location as the particles best 

location 

        Pbest(i, 11) = F(i) 
        Pbest(i, 0) = X(i, 0) 
        Pbest(i, 1) = X(i, 1) 
        Pbest(i, 2) = X(i, 2) 
        Pbest(i, 3) = X(i, 3) 
        Pbest(i, 4) = X(i, 4) 
        Pbest(i, 5) = X(i, 5) 
        Pbest(i, 6) = X(i, 6) 
        Pbest(i, 7) = X(i, 7) 
        Pbest(i, 8) = X(i, 8) 
        Pbest(i, 9) = X(i, 9) 
        Pbest(i, 10) = X(i, 10) 
'Checks to see if this particles current location is better than the current global 

best, if it is better sets current particles location as gbest 

        If Pbest(i, 11) < Gbest Then 
            Gbest = Pbest(i, 11) 
            Gbestpoint(0) = X(i, 0) 
            Gbestpoint(1) = X(i, 1) 
            Gbestpoint(2) = X(i, 2) 
            Gbestpoint(3) = X(i, 3) 
            Gbestpoint(4) = X(i, 4) 
            Gbestpoint(5) = X(i, 5) 
            Gbestpoint(6) = X(i, 6) 
            Gbestpoint(7) = X(i, 7) 
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            Gbestpoint(8) = X(i, 8) 
            Gbestpoint(9) = X(i, 9) 
            Gbestpoint(10) = X(i, 10) 
'Records in a test file when a new gbest is found 

            Open "C:\ModelRun.txt" For Append As #1 
                Print #1, "New G Best"; Tab; count; Tab; Gbest 
            Close #1 
        End If 
    Next 
     
'Sets the starting velocity for all particles as 0 

    For i = 0 To N 
        For j = 0 To 10 
            V(i, j, 0) = 0 
        Next 
    Next 
'This completes the start up of the algorithm 

 
'Algorithm then continues until ConCrit number of iterations pass without a 

change in the objective function value 

    Do Until c > ConCrit 
'Updates iterations counters 

        count = count + 1 
        c = c + 1 
'Updates the velocity vector 

            For j = 0 To 10 
                V(i, j, 1) = w * V(i, j, 0) + c1 * Rnd() * (Pbest(i, 1) - X(i, j)) + c2 * Rnd() * 
(Gbestpoint(j) - X(i, j))  
'If velocity is greater than the variable range * RLF, the velocity is set to the 

variable range * RLF 

                If V(i, j, 1) > (Xmax(j) - Xmin(j) * RLF) Then 
                    V(i, j, 1) = (Xmax(j) - Xmin(j) * RLF) 
                End If 
'If velocity is less than the variable range * RLF, the velocity is set to the 

variable range * RLF 

                If V(i, j, 1) < -(Xmax(j) - Xmin(j) * RLF) Then 
                    V(i, j, 1) = -(Xmax(j) - Xmin(j) * RLF) 
                End If 
                V(i, j, 0) = V(i, j, 1) 
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            Next 
        Next 
'Adjusts particles position based on velocity 

        For i = 0 To N 
            For j = 0 To 10 
                X(i, j) = X(i, j) + V(i, j, 1) 
                If X(i, j) < Xmin(j) Then 
                    X(i, j) = Xmin(j) 
                End If 
            Next 
        Next 
         
For i = 0 To N 
'Based on particles location, adjusts controls in Arena 

m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2 
Process.Queue) < " & X(i, 1) 
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3 
Process.Queue) < " & X(i, 2) 
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4 
Process.Queue) < " & X(i, 3) 
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5 
Process.Queue) < " & X(i, 4) 
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4) 
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6 
Process.Queue) < " & X(i, 5) 
 m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7 
Process.Queue) < " & X(i, 6) 
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8 
Process.Queue) < " & X(i, 7) 
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9 
Process.Queue) < " & X(i, 8) 
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10 
Process.Queue) < " & X(i, 9) 
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1 
Process.Queue) < " & X(i, 10) 
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10) 
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m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0) 
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") = 
"EXPO(36," & CInt(Rnd() * 10) & ")" 
'Runs the model 

            m.Go 
'Waits until the model is finished running 

 If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then  
m.End 

End If 
'Collected output data from text files and sets as modelout 

        Open "C:\Thesis\AASOutput.txt" For Input As #1 
           Line Input #1, modelout 
        Close #1 
'Based on results from model calculates objective function 

        Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the 
pallets over 10 years 
        ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) + 
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10))) 
        Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength + 
10))) 
        CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that 
spreads the cost of the pallets over 10 years 
        Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1 
        Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is an 6 second cycle time, and $10 
per unit 
         
        F(i) = Cp + Cf + CC + Ch + Cg 
 
            'If the current particles location is greater than that particles personal 

best and particle is feasible, then pbest is updated 

            If F(i) < Pbest(i, 11) Then 
                For j = 0 To 10 
                     
                    'Checks if current particle is feasible 

                    If X(i, j) > Xmax(j) Then 
                        Exit For 
                    End If 
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                    If X(i, j) < Xmin(j) Then 
                        Exit For 
                    End If 
                    If j = 10 Then 
                        Pbest(i, 11) = F(i) 
                        Pbest(i, 0) = X(i, 0) 
                        Pbest(i, 1) = X(i, 1) 
                        Pbest(i, 2) = X(i, 2) 
                        Pbest(i, 3) = X(i, 3) 
                        Pbest(i, 4) = X(i, 4) 
                        Pbest(i, 5) = X(i, 5) 
                        Pbest(i, 6) = X(i, 6) 
                        Pbest(i, 7) = X(i, 7) 
                        Pbest(i, 8) = X(i, 8) 
                        Pbest(i, 9) = X(i, 9) 
                        Pbest(i, 10) = X(i, 10) 
                         
                         
                        'If the current location is also better then Global best, gbest is 

updated 

                            If Pbest(i, 11) < Gbest Then 
                                 
                                'Convergence criterion counter is updated 

                                c = 1 
                                Gbest = Pbest(i, 11) 
                                Gbestpoint(0) = X(i, 0) 
                                Gbestpoint(1) = X(i, 1) 
                                Gbestpoint(2) = X(i, 2) 
                                Gbestpoint(3) = X(i, 3) 
                                Gbestpoint(4) = X(i, 4) 
                                Gbestpoint(5) = X(i, 5) 
                                Gbestpoint(6) = X(i, 6) 
                                Gbestpoint(7) = X(i, 7) 
                                Gbestpoint(8) = X(i, 8) 
                                Gbestpoint(9) = X(i, 9) 
                                Gbestpoint(10) = X(i, 10) 
                                 
                                'Prints current solution to file 

                                Open "C:\ModelRun.txt" For Append As #1 
                                     Print #1, "New G Best"; Tab; count; Tab; Gbest 
                                Close #1 
                            End If 
                    End If 
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                Next 
            End If 
        Next 
         
    'Reduced weighted inertia factor and then optimization is continued until 

convergence 

        w = w * WIF 
    Loop 
'Once the convergence criterion, the finish time is recorded 

Finishtime = Format(Time, "Long Time") 
'Run statistics and best solution found is recorded to a file 

Open "C:\OptimalOut.txt" For Append As #1 
    Print #1, "Run length of " & count  
    Print #1, Gbest 
    Print #1, Gbestpoint(0) 
    Print #1, Gbestpoint(1) 
    Print #1, Gbestpoint(2) 
    Print #1, Gbestpoint(3) 
    Print #1, Gbestpoint(4) 
    Print #1, Gbestpoint(5) 
    Print #1, Gbestpoint(6) 
    Print #1, Gbestpoint(7) 
    Print #1, Gbestpoint(8) 
    Print #1, Gbestpoint(9) 
    Print #1, Gbestpoint(10) 
    Print #1, Starttime 
    Print #1, Finishtime 
Close #1 
 
End Sub 



www.manaraa.com

 
 

7
8
 

 
A

P
P

E
N

D
IX

 IV
 –

 L
A

M
P

 M
O

D
E

L
 



www.manaraa.com

 
 

7
9
 

 
A

P
P

E
N

D
IX

 V
 –

 A
A

A
S

 M
O

D
E

L
 



www.manaraa.com

 
 

8
0
 

 
A

P
P

E
N

D
IX

 V
I –

 D
IS

T
R

IB
U

T
IO

N
 C

E
N

T
E

R
 M

O
D

E
L

 



www.manaraa.com

 
 

8
1
 

 
A

P
P

E
N

D
IX

 V
II –

 C
A

T
A

L
O

G
 C

E
N

T
E

R
 M

O
D

E
L

 



www.manaraa.com

82 

APPENDIX VIII – DIFFERENCE IN MEANS 

Example Test for Statistical Difference in Means: 

s�: �. 2 �4 , 0  
s�: �. 2 �4 � 0  

g. p.: �K , �w�. 2 w�4 �
�d.4�. / d44�4 

 

g. p.: �K , �202,332 2 279353��73052410 / 134864413 , 21.75 

Since |�K| is not greater then ��/4=2.080 the two numbers are not statistically 

different. 
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APPENDIX IX – PARAMETER ADJUSTMENT 
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