
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Pheromone particle swarm optimization of
stochastic systems
Paul Allan Wilhelm
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wilhelm, Paul Allan, "Pheromone particle swarm optimization of stochastic systems" (2008). Graduate Theses and Dissertations. 11352.
https://lib.dr.iastate.edu/etd/11352

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11352?utm_source=lib.dr.iastate.edu%2Fetd%2F11352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Pheromone particle swarm optimization of stochastic systems

by

Paul Allan Wilhelm

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:
Douglas Gemmill, Major Professor

Sigurdur Olafsson
Eliot Winer

Iowa State University

Ames, Iowa

2008

Copyright © Paul Allan Wilhelm, 2008. All rights reserved.

www.manaraa.com

ii

ACKNOWLEDGEMETS

 This is dedicated to my family and friends, who supported me throughout my

education.

 I’d like to thank Dr. Douglas Gemmill for his invaluable comments and suggestions

during the writing of this paper and Sarah and Jeremy for their help editing this paper.

www.manaraa.com

iii

TABLE OF CONTENTS

List of Figures ..v

List of Tables .. vii

Abstract .. viii

Chapter 1. Overview ..1

1.1 Introduction ..2

1.1.1 Pheromone PSO for Stochastic Models ..2

1.1.2 Parameter Optimization of Pheromone PSO ..2

1.1.3 Modifications of Pheromone PSO ..3

Chapter 2. Review of Literature...4

2.1 General PSO...4

2.2 Inertia Weight ..6

2.3 Constriction Factor...6

2.4 Parameter Optimization ...7

2.5 Digital Pheromones ..8

2.5.1 Pheromone PSO ..9

2.5.2 Pheromone PSO Implementation ..9

2.6 Neighboring Best Particle ..11

2.7 Constrained Optimization ..12

2.8 Stochastic Simulation Optimization ..13

2.8.1 Stochastic Simulation Optimization with Heuristic Methods13

2.8.2 Stochastic Simulation Optimization with Evolutionary Algorithms14

2.8.3 Stochastic Simulation Optimization with Commercial Products................16

2.9 Literature Conclusion...16

Chapter 3. Methodology ..17

3.1 Overview of Methodology ...17

3.2 Development of Models to Optimize ...17

3.2.1 Asynchronous Automated Assembly System (AAAS)17

3.2.2 Catalog Center Model ...18

3.2.3 Lamp Assembly System ...19

www.manaraa.com

iv

3.2.4 Distribution Center Model ..20

3.2.5 Steady State ...21

3.3 PSO Model Development ..22

3.4 PSO vs. Pheromone PSO ...24

3.5 Parameter Optimization for Pheromone PSO ..24

3.6 Modifications of Pheromone PSO ...26

3.6.1 Pheromone Release Modification ...27

3.6.2 Orthogonal Arrays ..27

Chapter 4. Results ..28

4.1 Overview of Results ...28

4.2 PSO vs. Pheromone PSO ...28

4.3 Selection of Parameter Levels for Pheromone PSO ..30

4.3.1 Developing Parameter Settings ...30

4.3.2 Summarizing Parameter Effects ...38

4.3.3 Testing PSO vs. OptQuest ..39

4.4 Modification using Orthogonal Arrays and Biased Starting Location42

4.4.1 Summary of Comparison ..48

Chapter 5. Conclusions and Future Work ..49

References ..50

Appendix I – L27 Array ...55

Appendix II – Sample Code Pheromone PSO ...56

Appendix III – Sample Code PSO ...68

Appendix IV – Lamp Model ..78

Appendix V – AAAS Model..79

Appendix VI – Distribution Center Model ..80

Appendix VII – Catalog Center Model ..81

Appendix VIII – Difference in Means ...82

Appendix IX – Parameter Adjustment ...83

www.manaraa.com

v

LIST OF FIGURES

Figure 1 - Startup time for AAAS model... 21

Figure 2 - Pheromone PSO flowchart .. 23

Figure 3 - Comparison between PSO and pheromone PSO on the lamp model.................... 28

Figure 4 - Comparison between PSO and pheromone PSO on AAAS model....................... 29

Figure 5 - Comparison between PSO and pheromone PSO on catalog center model. 29

Figure 6 - Comparison between PSO and pheromone PSO on
distribution center model. .. 30

Figure 7 - Effect of adjusting swarm size on distribution center model. 31

Figure 8 - Effect of adjusting convergence criterion on AAAS model. 32

Figure 9 - Effect of adjusting C1 and C2 on distribution center model. 33

Figure 10 - Effect of adjusting C3 on AAAS model. ... 34

Figure 11 - Effect of adjusting pheromone release rate on lamp model. 35

Figure 12 - Effect of adjusting pheromone decay factor on lamp model. 36

Figure 13 - Effect of adjusting weighted inertia factor on distribution center model............. 37

Figure 14 - Effect of adjusting maximum velocity allowed on lamp model. 37

Figure 15 - Minimization of AAAS using OptQuest vs. pheromone PSO. 39

Figure 16 - Maximization of lamp model using OptQuest vs. pheromone PSO. 40

Figure 17 - Minimization of distribution center model using
OptQuest vs. pheromone PSO. .. 40

Figure 18 - Minimization of catalog center using OptQuest vs. pheromone PSO. 41

Figure 19 - Effects of modifications to pheromone PSO on number of
objective function calculations for lamp model. ... 42

www.manaraa.com

vi

Figure 20 - Effects of modifications to pheromone PSO on maximization of
objective function for lamp model. ... 43

Figure 21 - Effects of modifications to pheromone PSO on number of objective
function calculations for AAAS model. .. 44

Figure 22 - Effects of modifications to pheromone PSO on minimization of objective
function for AAAS model. .. 44

Figure 23 - Effects of modifications to pheromone PSO on number of objective
function calculations for catalog center model. ... 45

Figure 24 - Effects of modifications to pheromone PSO on minimization of
objective function for catalog center model. ... 46

Figure 25 - Effects of modifications to pheromone PSO on number of objective
function calculations for distribution center model. .. 47

Figure 26 - Effects of modifications to pheromone PSO on minimization of objective

function for distribution center model. .. 47

www.manaraa.com

vii

LIST OF TABLES

Table 1 - Parameter ranges and standard values ..26

Table 2 - Tuned parameter levels...38

Table 3 - L27 array from The University of York ...55

www.manaraa.com

viii

ABSTRACT

Pheromone particle swarm optimization (PSO) of stochastic systems tests the impact

of adjustments to algorithm parameters on algorithm performance when searching for

optimal solutions to stochastic simulations. To test the benefit of adjusting PSO, the tuned

algorithm is compared to the results from the commercial optimization software, OptQuest.

In addition, two modifications to pheromone PSO are proposed. These include utilizing

orthogonal arrays as an initial position for the algorithm and biasing the release of

pheromones in the first iteration based on the relative strength of the objective function.

These modifications are shown to improve the average objective functions found as well as

the time to convergence in the optimization of some problem types. This paper also

highlights the applicability of using pheromone PSO to optimize stochastic simulations

compared to commercial optimization software.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

Simulations of complex systems are continually being developed by industry as the

rise in computing power and software makes it cost effective to do so. A current challenge is

finding new and better ways to optimize systems via simulation. There are heuristic

optimization methods that utilize tabu search, scatter search, mixed integer programming and

neural networks to find optimal levels for decision variables (resource levels, number of

transporters, etc.) in simulations. These work well and can be computationally efficient

methods to optimize a system. The rise in the availability of computing power allows the

utilization of other methods that may provide consistent solution quality in more situations.

The methods being referred to are evolutionary computational techniques, which include

genetic algorithms (GA) and particle swarm optimization (PSO). These types of algorithms

utilize natural schemas and mimic their design and decision criteria to find potentially good

solution spaces. GA’s work with Darwin’s theory that the strongest survive; the algorithm

tries to find the good “traits” of a solution in the belief that the optimal solution will have

those same “traits.” PSO is based on the swarming of bees and flocking of birds, where each

entity or particle is drawn to its best solution and the swarm’s best solution. With this

information, particles move through the design space in an effort to find the global best

solution. Utilizing the before mentioned general schemas, as well as including a certain

amount of randomness in the algorithm helps evolutionary algorithms avoid getting trapped

in local minima and find the global minimum. The following work focuses on using

variations of PSO to find optimal levels for decision variables to stochastic simulations and

the impact that adjusting parameters has on this type of optimization problem.

www.manaraa.com

2

1.1 Introduction

PSO is a relatively new optimization method that was developed by Kennedy and

Eberhart in 1995. In this work, PSO will be used to heuristically optimize decision variables

in simulations created in Arena, a discrete event simulation software package created by

Rockwell Software. Unlike many other works in this area, the primary focus will be to test

how parameter adjustments and minor modifications to the algorithm affect convergence and

computational time.

1.1.1 Pheromone PSO for Stochastic Models

The first hypothesis that will be tested in this work is that pheromone PSO is a

constructive addition to standard PSO and will decrease solution time when solving

stochastic optimization problems.

 1.1.1.1 Work on Pheromone PSO

Work by Kalivarapu et al. (2007) shows that pheromone PSO can have a positive

impact on performance when used to find the minima of highly complex nonlinear

mathematical functions. This will be rigorously tested on stochastic problems by comparing

the solution and solution time of pheromone PSO to that of traditional PSO.

1.1.2 Parameter Optimization of Pheromone PSO

The second hypothesis tested is that a correctly tuned pheromone PSO for stochastic

problems will have a decreased time for convergence and an increased quality of solution. To

test this problem, a tuned pheromone PSO solution will be compared to the results of

OptQuest, a commercial simulation optimization package included with Arena.

www.manaraa.com

3

1.1.3 Modifications of Pheromone PSO

The final hypothesis tested is that utilizing two minor algorithm changes can enhance

the consistency and quality of the algorithm. The modifications that will be tested use

orthogonal arrays to select starting points for the algorithm, and only particles in relatively

good solution space drop pheromones. These adjustments don’t change the basic structure of

the algorithm, but they try to ensure consistent coverage of the solution space and bias the

starting direction toward the best areas found in the first iteration.

www.manaraa.com

4

CHAPTER 2. REVIEW OF LITERATURE

2.1 General PSO

PSO is an evolutionary computational technique developed by Kennedy et al. (1995).

It uses the concept of birds flocking and swarms of fish to propel the algorithm across the

solution space on its way to the global optimum. After the inception of PSO, Eberhart et al.

(1996) eliminated a number of extraneous parameters that didn’t aid in optimization. This

slimmer version is what is now known as the basic PSO algorithm. The algorithm is

computationally quite simple: A swarm of particles is selected, with each particle

representing a random discrete point in the solution space. Every particle is then evaluated on

the strength of its current location. The strength is compared to the particle’s personal best

location and to the swarm’s best location, updating each if the current position is found to be

better. The algorithm then determines where a particle is going to move next using a velocity

update equation based on its current location compared to: what direction it was moving in

the last iteration, the best location it has been, and the best location the swarm has been. The

velocity update equation is shown mathematically as follows, where each dimension

represents a control parameter being heuristically optimized:

��,�,�: velocity of particle �, in dimension �, at time �

�: constant, controlling the local and global search ability

������: random number from #0,1&
'�: global best location in dimension �

)�,�: best location found for particle �, in dimension �

+�,�,�: current location of particle �, in dimension �, at time �

www.manaraa.com

5

 ��,�,� , ��,�,�-. /
. 0 ������ 0 1)�,� 2 +�,�,�-.3 /
4 0 ������ 0 �'� 2 +�,�,�-.�

(2.1)

Using the result from equation 2.1, the particle’s location can be updated with

equation 2.2.

+�,�,� , +�,�,�-. / ��,�,�

(2.2)

The velocity and position update are continued for each member of the swarm. The

particles’ new locations are evaluated and the process repeats until the swarm satisfies the

preset convergence criterion.

Since PSO’s inception in, there has been a large amount of research conducted on it.

Poli et al. (2008) categorize the work that has been completed to date; this paper will only

focus of the work relevant to this extension.

There has been a considerable interest in finding ways to reduce the time to

convergence and the consistency of the PSO algorithm. To accomplish this, researchers have

employed a variety of methods, from minor parameter modification to adding additional

components to the velocity update equation. Some minor parameter modifications that have

been made include: decreasing the weight of the inertia factor, decreasing the overall velocity

of the swarm, optimizing the population depending on the dimension of the problem, and

adjusting the speed of the swarm based on the iteration number. The components that

researchers have added to the velocity update equation include the digital pheromone method

and the neighboring best method.

www.manaraa.com

6

2.2 Inertia Weight

The next major addition that is consistently included with PSO is the weighted inertia

factor (Shi et al. 1998a, 1998b). In this addition, they attempt to modify the algorithm to give

it a strong global search ability at the beginning of the optimization and a strong local search

ability at the end of the optimization. This is accomplished by decreasing the weight that

inertia has on the next position linearly throughout the optimization. The revised velocity

update equation is as follows:

��,�,� , 5 0 ��,�,�-. /
. 0 ������ 0 1)�,� 2 +�,�,�3 /
4 0 ������ 0 �'� 2 +�,�,��

(2.3)

In equation 2.3, w is decreased gradually throughout the optimization, typically 5%

per iteration, to adjust the search from a global to a local search. Alternatively, in work by

Zheng et al. (2003) it is argued that for some problem types an increasing inertia weight will

increase both the convergence speed and the solution precision.

2.3 Constriction Factor

PSO was originally based on modeling an algorithm to a social system, and was

based on trial and error. This original PSO lacked a thorough mathematical foundation. Work

done by Clerc (1999), shows that a constriction factor may be a necessary addition to ensure

convergence. While a detailed explanation of the math behind the algorithm is beyond the

scope of this paper, the simplified idea behind this method is to multiply the entire velocity

update equation with a function K, where K is a function of c1 and c2 as shown in equation

2.4 and equation 2.5 below.

www.manaraa.com

7

��,�,� , 6 0 #��,�,�-. /
. 0 ������ 0 1)�,� 2 +�,�,�-.3 /
4 0 ������ 0 �'� 2 +�,�,�-.�&
(2.4)

6 , 282 2 9 2 :94 2 498 , 5<=�= 9 ,
. /
4, 9 > 4
(2.5)

In work by Eberhart and Shi (2000), 9 is set to 4.1, thus making the constant

multiplier K equal to 0.729. They also use a maximum velocity for each dimension i, set to

the dynamic range of that dimension. This is argued to be a robust parameter selection for

most problem types.

2.4 Parameter Optimization

According to El-Gallad et al. (2002), “Unlike many other computational intelligence

techniques, the particle swarm optimizer has few parameters to tune. However, properly

chosen values for these parameters can positively affect the accuracy of the obtained results

as well as the time consumed during the search process.” El-Gallad examines the impact of

three parameters: swarm size, number of iterations, and velocity of particles. He argues that,

for the particular function tested, as the swarm size increases, the quality of the solution

increases. He also shows that as the swarm size increases one is met with diminishing gains

in quality improvement. El-Gallad states that a good swarm size for the seven-dimensional

test problem is 30 particles. He also argues that the relationship with swarm size and quality

of solution is true for the number of iterations, and proposes a number of iterations equal to

500. He proposes that an adaptive velocity based on work by El-Gallad et al. (2001) is best.

Recent work by Zhang et al. (2004) discusses optimal parameter choice for constriction

www.manaraa.com

8

factor PSO. The parameters examined are the sum of
. /
4 , 9, swarm size, and the

maximum allowed velocity (?) as a proportion of the variable range. Each variable was

tested on nine common test functions. Zhang et al. (2004) concluded that 9 should be set to

4.05 for highly multimodal functions and to 4.1 for unimodal functions. A ? in the range of

[0.01, 1] is appropriate, with a value of 0.5 for multimodal functions and a value of 0.05 for

unimodal functions. This implies that particles should take larger steps in more complicated

search spaces. The optimal swarm size was set to 50 for higher dimensional problems and to

30 for lower dimensional problems.

2.5 Digital Pheromones

 In addition to adjusting parameters, many researchers have worked on variations to

PSO to enhance convergence. One variation is adding digital pheromones. Pheromones are

scents left behind by insects to mark food and nesting locations for other members of their

swarm. The scent becomes stronger as more members of the swarm make their way to that

particular area and find it suitable. Utilizing this concept, the digital pheromone was born,

where digital marks known as pheromones are dropped by particles when they find

promising areas of the design space. Using digital pheromones to aid in solving optimization

is a recent development that started in the early 1990’s in ant colony optimization, where the

concept was used to mark promising paths in traveling salesmen type problems (Gambardella

et al. 1996; Li et al. 2003).

www.manaraa.com

9

 2.5.1 Pheromone PSO

The concept for digital pheromones was detailed in research done by Kalivarapu et al.

(2007). The basic idea behind pheromone PSO is that, in addition to the global best, personal

best, and momentum influencing a particle’s velocity, a target pheromone has an additional

influence. This is shown in equation 2.6, where tpi is the target pheromone selected by

particle i:

��,�,� , ��,�,�-. /
. 0 ������ 0 1)�,� 2 +�,�,�-.3 /
4 0 ������ 0 �'� 2 +�,�,�-.� /
@
0 ������ 0 ��)�,� 2 +�,�,�-.�

(2.6)

Along with modifying the velocity update equation, there are several other changes to

the algorithm when adding pheromones to PSO. These changes include choosing when a

pheromone is dropped by a particle, how to select a target pheromone, merging of

pheromones in the pheromone field, and decay of pheromones. A summary of how these

changes are dealt with will follow and a detailed explanation of the changes can be found in

Kalivarapu et al. (2007).

2.5.2 Pheromone PSO Implementation

When implementing pheromone PSO, the dropping of pheromones must be

addressed. In the work of Kalivarapu et al. (2007), two methods of pheromone release are

explained: 50% of the swarm population will randomly drop a pheromone, and any swarm

member that finds a better personal best location will drop a pheromone. The next issue to

address is how to select a target pheromone. This is done by measuring the normalized

www.manaraa.com

10

distance on all dimensions of the problem, subtracting that from one, and multiplying the

difference by the pheromone strength (P). This is shown mathematically as follows, where:

�: number of design variables
A)�: location of pheromone j
A�: location of particle i
���'=�: allowed variable range in dimension �

� , EF GA)� 2 A����'=� H4I
.

JK , �1 2 ��J

tp� , L�+ �JK�

(2.7)

To ensure that the same point doesn’t have multiple pheromones dropped on it, a

method of merging pheromones in the same relative location was created. This is done by

determining the radius of influence of a given pheromone, and if it overlaps with another

pheromone, the two are merged with a strength equal to the average of their individual

strengths. In addition to managing pheromones that are placed on top of one another,

pheromones released early in the optimization process may represent poor locations of the

design space and could slow convergence. This is dealt with using a pheromone decay factor

that reduces the strength of every pheromone with each iteration. When a pheromone is

released, it starts with a strength of one, and the strength is reduced by 5% each iteration.

This ensures that pheromones released early in the optimization process will have a

significantly decreased influence later in the optimization process (Kalivarapu et al. 2007).

www.manaraa.com

11

 2.6 Neighboring Best Particle

The neighboring best particle method has been developed by a number of people,

with some minor variations among the versions. In the neighboring best particle method,

particles are influenced by a nearby particle that has a good fitness value as well as the global

best particle and the personal best location. The method of determining which particle to

select varies. One good method was developed by Veeramachaneni et al. (2003), using a

ratio of the difference in the fitness value to the distance to the proposed particle. This is

shown in the equation 2.8 below:
MNO��, P, �� , Qitness distance ratio

A�� , location of neighboring particle P in dimension �

A� , location of particle � in dimension �

Fitness��� , Qitness value of particle �
MNO��, P, �� , Fitness�P� 2 Fitness���|A�� 2 A��|

(2.8)

Using equation 2.8, the velocity update equation selects the neighbor particle with the

best fitness improvement to distance ratio and uses this new location as a third direction in

the update equation. The general form is shown below in equation 2.9:

��,�,� , ��,�,�-. /
. 0 ������ 0 1)�,� 2 +�,�,�-.3 /
4 0 ������ 0 �'� 2 +�,�,�-.� /
@
0 ������ 0 �J�T,U 2 +�,�,�-.�

(2.9)

This works well with a number of applications, as shown in work by Veeramachaneni et al.

(2003).

www.manaraa.com

12

2.7 Constrained Optimization

The PSO algorithm was originally designed for an unconstrained search space. Since

most optimization problems have constraints, methods of adapting the PSO algorithm to

manage constraints have been created. One of the most popular methods is based on an

adaption from Lagrangian relaxation, as described by Lu et al (2007). In this method, the

PSO’s velocity update equation is modified and there is a change in the method of evaluating

the objective function. The objective function is evaluated as required in the problem with an

additional term, V, as shown below in equations 2.10-2.12:

min WXYP=
���= MZ���[� / V\

(2.10)

5<=�= V , F L�+W0, '��+�\]
�^. / F L�+_0, |<��+�| 2 `a]bc

�^]b.

(2.11)

��,�,� , 58)�,�,�-.2)�,�|d�'����,�,�-.3 / �����1� 0 1)�,� 2 +�,�,�3 / �1 2 �����1�� 0 �'�
2 +�,�,��

(2.12)

The addition of V to the objective function penalizes the point evaluated for violating

any constraints, thus encouraging the algorithm to pick points that are feasible by causing the

particles to fly toward the feasible region. This is shown to work in cases with a high ratio of

feasible space to available search space.

www.manaraa.com

13

2.8 Stochastic Simulation Optimization

Optimizing stochastic systems is a concept that has been around since there have been

systems that needed improvement. The first method was to change the settings of the system

and see how the output was affected. Since the inception of the computer, models have been

created to allow production controllers to test proposed additions without impacting

production, allowing only for the implementation of changes that are expected to have a

positive impact on the system. Over time, computer processing power has increased

dramatically. Correspondingly, so has the complexity of systems that are able to be modeled.

The traditional method of determining a good possible scenario to model is to take and test a

particular level of settings suggested by a supervisor and see if it improves the current output

of the system. This particular method requires an extremely high level of system knowledge,

and even so has a very low chance of selecting the global best operating parameters. Work by

Al-Aomar (2000) showed that using a discrete event simulator combined with expert

knowledge, it was possible to make substantial improvements to a typical linear program

optimization in a product mix simulation. The next common research method is to use typical

optimization routines to select parameters that are used to control the system. Since this area

has a high potential for substantial savings, a large amount of research has been dedicated to

this area. It has also led to some commercial products that can be used to optimize simulation

models. The relevant research in this area will be discussed next.

2.8.1 Stochastic Simulation Optimization with Heuristic Methods

Meketon (1987) surveyed existing methods of selecting optimal simulation

parameters. At that time, the usual methods fell into three categories: traditional non-linear

www.manaraa.com

14

programming techniques, response surface methodologies, and stochastic approximations.

Since then, there has been a large push toward utilizing heuristic search techniques to solve

highly nonlinear discontinuous problems. Work by Konak et al. (2005) discusses optimizing

simulation problems using tabu search, including discussion of the profound effect that

parameter selection has on the performance of the search. Work by Yang et al. (2004)

discusses using tabu search to optimize the parameters of a flow shop scheduling problem.

Empirical results showed tabu search as a promising method to solve the flow shop

scheduling problem. Simulated annealing is another heuristic search method that was first

developed in 1953 by Metropolis et al. It is based on emulating the physical process of

aggregating particles in a system as it is cooled. The concept has since been developed into

an algorithm that can be used to solve a variety of optimization problems. This is shown in

work by Manz et al. (1989), where simulated annealing was used to optimize parameters for

an automated manufacturing system simulation.

2.8.2 Stochastic Simulation Optimization with Evolutionary Algorithms

As an alternative to these types of heuristic search methods, evolutionary search

methods such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are

showing a wide range of applicability and robustness. These methods work well to solve a

wide variety of problems and have received a large amount of research. In work by Joines et

al. (2002), GA is used to optimize simulations of a supply chain to set optimal order quantity

and time between orders. Koyama et al. (2004) worked on optimizing routing algorithms

with GA using a simulated system. Wang et al. (2003) used a fuzzy adaptation of GA to

optimize the industrial fermentation tower process and improved the expert system being

www.manaraa.com

15

utilized. Dahal et al. (2005) used a standard GA optimizer to solve a simulation of an actual

port facility to minimize total costs by reducing delays. Persson (2006) was able to use GA to

solve a multi-objective mail sorting simulation created in Arena.

Yun et al. (2006) compared the results of GA to that of simulated annealing and

OptQuest. The performance of these three algorithms was compared using a traffic

management optimization problem. It was found that GA converged to a better solution in a

shorter amount of time on a per iteration basis. This raises a concern because GA is a swarm

based algorithm and each iteration takes 20-50 times the amount of computational time as

OptQuest or simulated annealing, depending on the population used in the GA algorithm.

PSO has recently been used to solve the stochastic optimization of simulation

problems. Zhang (2008) used PSO to solve a multi-objective simulation of earthmoving

operations, comparing results to those of an exhaustive search. Alkhamis (2005) used PSO to

optimize a repairable item inventory system, which examines working with discrete and

integer variables by solving the continuous case and rounding to the nearest integer value.

The work by Wu et al. (2005) compares the results of optimization of a ready mixed concrete

simulation using PSO and GA. In this optimization case, PSO with constriction factor and

weighted inertia reaches a better solution significantly faster than a GA-based optimization.

While this is a very useful finding, the lack of variations and adjustments of the PSO and GA

algorithms, as well as only testing it on one case shows there is still a need to optimally

adjust PSO for stochastic discrete event simulation.

www.manaraa.com

16

2.8.3 Stochastic Simulation Optimization with Commercial Products

In addition to these heuristic search methods, some commercial heuristic simulation

optimization programs have been created, including OptQuest and ProModel Optimization

Software Suite. These software programs utilize popular optimization techniques and are

integrated with simulation programs. They can be easily interfaced with a simulation model

to find optimal decision variable levels. April et al. (2001) describe the algorithm that is used

in the OptQuest simulation optimization package as an integrated set of methods, including

tabu search, scatter search, mixed integer programming, and neural network. While the exact

method in which these algorithms are utilized is not public, work by Kleijnen (2006) shows

the diverse applicability of the software. Kleijnen’s work also discusses the alternative

methods of setting convergence criteria. The work shows that, while the default settings are

appropriate for most problem types, a large amount of efficiency is gained by good selection

of the starting solution, choice of suggested solutions, and size of the search area.

2.9 Literature Conclusion

As noted previously, much work has been focused on optimizing PSO for solving

linear and nonlinear deterministic systems. Significantly less research has been done on

solving stochastic problems, especially when dealing with simulation where steady state is

not guaranteed. In this type of volatile problem, little research has been completed.

www.manaraa.com

17

CHAPTER 3. METHODOLOGY

3.1 Overview of Methodology

Pheromone PSO was tested with stochastic simulations by interfacing multiple

versions of PSO, including pheromone PSO, with Arena models. Once it was shown that

pheromone PSO was a constructive addition to PSO, the input parameters for pheromone

PSO were tuned to solve stochastic problems. The solution time and solution quality

achieved with the optimization was compared to the solution time and solution quality found

when solving the same problem with OptQuest. Once this test was completed, two minor

modifications were made in order to further enhance the algorithm: orthogonal arrays were

used to place the initial solutions, and pheromones were initially placed only at points with

relatively high objective function values.

3.2 Development of Models to Optimize

The first step was to create the simulations to be optimized and establish cost metrics

on which to rate the simulation. Following, this process is described for four test simulation

models.

3.2.1 Asynchronous Automated Assembly System (AAAS)

The first model optimized was a closed loop asynchronous automated assembly

system (AAAS) based on the model described in Stochastic Optimization of Cost of

Automatic Assembly System (Tandiono et al., 1994). An AAAS is a high speed production

system containing a number of stations that are set in a predetermined order. The product

starts at the first station and is processed at each subsequent station until it has been

www.manaraa.com

18

processed on every machine. At that point the product is completed and is ready for the next

stage in its production. Being asynchronous, processing times at each station are not equal.

When a particular operation is completed, the product moves to the next station. A buffer

zone exists between the stations to allow the previous machine to keep running even if the

following station hasn’t finished production. Since this is a closed loop system, the product is

loaded onto a pallet at the first station and the finished product is unloaded at the final

station. The empty pallet then returns to the first station. The two major items that can be

adjusted and must to be optimized are the number of pallets in the system and the length of

the buffers between stations. If the two are not set correctly, starvation and/or blocking can

occur throughout the system. A diagram of this model can be seen in Appendix V – AAAS

Model. Based on the work by Tondiono et al. (1994) the optimal setting for minimizing the

cost function can be determined by:

ef: conveyor length

J: number of pallets

gJ: total units produced during the simulation

e[d�: total cost of a particular setup

e[d� , 15000 0 �ef / 10� 0 0.1627 / 500 0 J 0 0.1627
/ 1500 0 �ef / 10� 0 10.2259 / 0.0314 0 �ef / 10�3
/ 15000 / 100 0 J 0 0.1 / 52 0 4 0 10 0 �2200 2 gJ�

(3.13)

3.2.2 Catalog Center Model

The second model is based on a catalog center using the example model included in

Simulation with Arena by Kelton et al. (2004). This model has calls arriving to a catalog

www.manaraa.com

19

center where a number of representatives take the orders. The order must be filled by

warehouse workers and the requested items must be loaded on a delivery truck. Once the

entire order is shipped, a copy of the ticket is sent to the billing department and sales

department where the invoice and future mailing lists are generated, respectively. A diagram

of this model can be seen in Appendix VII – Catalog Center Model. The model’s optimal

parameter settings are adjusted using the cost equation that follows:

nop: number of customer that baulk
e��O=): number of catalog representatives

rsr: number of warehouse workers

NO: number of truck drivers

pe: number of scanners and operators

eo: number of billing clerks

nes: shipping batch size

e[d�: total cost of a particular setup

e[d� , 7500 0 �nop� / 60000 0 e��O=) / 45000 0 �rsr / NO / pe / eo� / 1000
0 4400 2 nop2160 / G4400 2 nopnes H 0 20 0 3000

(3.14)

3.2.3 Lamp Assembly System

The third model that was analyzed is a lamp assembly line as described in work by

Mo (2007). The twenty-one step, five-stage lamp supply chain is modeled using times and

flows from Mo (2007), with an additional storage constraint limiting the total amount of

www.manaraa.com

20

work in progress (WIP). The goal of this simulation is different from that described in the

work by Mo; the objective is to maximize the profit of the system instead of minimizing the

cost of WIP. A diagram of this model can be seen in Appendix IV – Lamp Model. The

operating cost is calculated as follows:

f�L)d: number of lamp assemblies created
O=�Z��d: number of lamps returned to supplier

uL)v[w==d: sum of all assembly employees

xyg: the requested time between supply shipments

J�[{�� , |���f�L)d, 5184� 0 500 2 3650 0 �O=�Z��d� 2 60000 0 uL)vw==d / 5184
2 f�L)d 2 31,553,600/xyg

(3.15)

3.2.4 Distribution Center Model

The fourth model that was included is a ten-door, pallet-based, long-haul distribution

center, with five incoming and five outgoing doors. The model attempts to determine the

optimal door location and number of fork trucks in the system for this distribution center. A

diagram of this model can be seen in Appendix VI – Distribution Center Model. The

objective function is calculated as follows:

ygxp: average time a shipment is in the system
pXg: number of shipments that exceeded the maximum time allowed in the system
M[�6: number of fork trucks
M[�6d)==�: speed factor that allows increase movement from all fork trucks
e[d�: total cost of a particular setup

www.manaraa.com

21

e[d� , 12500 0 ygxp / 25 0 58.4 0 pXg / 20000 0 �M[�6� / 2000 0 M[�6d)==� 0 M[�6

(3.16)

3.2.5 Steady State

Once the models were defined and created in Arena, steady state was evaluated to

establish the appropriate warm-up time for the simulation. Once established, that number was

increased by an arbitrary amount because as the different input parameters are changed, the

time it takes to reach steady state could potentially increase. This process to determine time

until steady state is described below:

Figure 1 - Startup time for AAAS model.

Steady state is described as the standard running condition of a particular process not

influenced by start-up. In Figure 1 above, after three and a half hours of run time (marked by

the black line) the system levels off and is in steady state. Then, to ensure that all variations

355

360

365

370

375

380

385

390

395

400

405

410

0 5 10 15 20 25

U
n

it
s

P
ro

d
u

ce
d

Hours

Start-up Time for AAAS Model

Five Period Average

Units Produced

www.manaraa.com

22

of this simulation were in steady state, a warm-up period of five hours was used (shown as

the red line).

3.3 PSO Model Development

Once the models were created in Arena, the PSO algorithm was set up to control the

algorithm, and update and control the Arena models. The adjustment and control of the

Arena models was required in order to evaluate the objective function at different points in

the design space. PSO was coded into Arena using Visual Basic because of the ease of

adjusting the simulation model as needed by the algorithm. The PSO and pheromone PSO

code for the AAAS model can be seen in their entirety in Appendix III and VI, respectively.

The general form for the algorithm/simulation interaction implemented can be seen in

Figure 2 below:

www.manaraa.com

23

Figure 2 - Pheromone PSO flowchart

Figure 2 shows that once a PSO algorithm was created as an object in the Arena model, it

filled the role of the optimization package. It initially picks population parameters, populates

them in the Arena model, and starts the Arena model running. When the model is finished

running it writes the measured metrics to a text file which the PSO program uses to

determine the next test location. The convergence criterion for the algorithm is met when the

algorithm completes the required number of iterations without a change to the global best

www.manaraa.com

24

solution. When this happens, the algorithm stops. Otherwise, the algorithm sends the updated

population parameters to the Arena model and the process is repeated until the convergence

criterion is met.

3.4 PSO vs. Pheromone PSO

Linking Arena and Visual Basic, a comparison between PSO and pheromone PSO

was made using the four models described in section 3.2. Standard levels derived from

literature (El-Gallad et al. 2002, Zhang, et al. 2004 and Kalivarapu et al 2007) were used for

the parameters in PSO; the values for these levels are shown in Table 1 on page 26. PSO and

pheromone PSO results were compared using average solution quality and time to

convergence, based on the number of calculations using the objective function. Objective

function calculations were used as a measure of time to convergence because in optimizing

simulations, the time it takes to run the simulations is orders of magnitude higher than the

time it takes to run the rest of the optimization code. As shown in work by Kalivarapu

(2008), even very complicated functions of up to 50 dimensions took less than 100 seconds

to optimize using pheromone PSO, compared to 1200 seconds for a comparatively simple

simulation model optimization.

3.5 Parameter Optimization for Pheromone PSO

In order to determine what parameters work best for pheromone PSO on stochastic

problems, four simulations were used. These were used to optimize the input parameters of a

pheromone PSO with weighted inertia. The results were used to tune the algorithm and

compare the results of all the simulations to the results of OptQuest. OptQuest is a well-

www.manaraa.com

25

developed program that utilizes tabu search, scatter search, mixed integer programming and

neural networks to optimize complex simulations and, according to Kleijnen (2006), sets a

good bar for comparison to see if PSO is adept at solving stochastic optimization problems.

The models were compared on three criteria: solution quality, consistency, and

computational time.

The PSO algorithm was tuned to solve stochastic optimization. All of the input

parameters that can be adjusted must be studied. In this case, the simplest parameters are the

size of the swarm, the number of iterations until convergence, and the maximum velocity.

Additional parameters include the number of pheromones dropped in the first iteration, the

decay rate of the pheromone field, and values of the coefficients associated with global best,

personal best, and pheromone selected (alternatively known as c1, c2, and c3, respectively).

From previous literature, there are predetermined parameter values that are normally used.

These, as well as a range of acceptable values, can be seen in Table 1:

www.manaraa.com

26

Table 1 - Parameter ranges and standard values

Parameter Minimum

Value

Standard

Value

Maximum

Value

Units

c1 1 2 4 NA

c2 1 2 4 NA

c3 1 4 6 NA

Weighted inertia

factor

1% 5% 25% Percentage decrease

Pheromone

decay factor

1% 5% 25% Percentage decrease

Pheromones

dropped during

first iteration

20% 50% 100% Percentage released

Maximum

velocity

20% 80% 100% Percentage of variable
range

Swarm size 10 30 50 Number of members

Iterations until

convergence

10 20 50 Number of iterations
without an improving
solution

These parameters were run five times at each incremental adjustment of the variable,

and the results from the optimization algorithm were recorded into data sets to show how the

algorithm behaved as the parameters were adjusted.

3.6 Modifications of Pheromone PSO

While pheromone PSO is a well developed algorithm, there are a number of

modifications to the initialization of the algorithm that have the potential to increase its

consistency and speed. These modifications include using an orthogonal array to set the

particles’ starting locations and allowing only the good particles to drop pheromones.

www.manaraa.com

27

3.6.1 Pheromone Release Modification

Pheromone release during the first iteration was initially set to allow each particle a

50% chance of releasing a pheromone. This was done to allow a thorough exploration of the

solution space. The modification tested was to only allow particles that have an objective

function value within some percentage of the global best value to drop pheromones. This

ensures that only areas of the solution space that are relatively good compared to the current

global best have a pheromone dropped in them. While this biases the search direction toward

the area of the search space where good solutions were found, it has the potential to decrease

the time to convergence.

3.6.2 Orthogonal Arrays

Orthogonal arrays were developed in statistics as a systematic way of setting test

levels for variables in a problem. In an orthogonal array, each vector is designed to be

perpendicular to every other vector, and conveys unique information about the test to avoid

redundancy in testing. This concept was used to set the starting location for PSO. For the

selected problems, the largest number of variables is thirteen. By setting each decision

variable to three levels (the minimum, the mean, and the maximum), an L27 array can be

used to contain the problem. This array size works well for PSO applications because 27, the

number of tests needed to define the thirteen variables at three levels, is close to the standard

value for the number of particles in a swarm. A list of the vectors for the thirteen variables

and three levels can be found in Appendix 1.

www.manaraa.com

28

CHAPTER 4. RESULTS

4.1 Overview of Results

 Once pheromone PSO was shown to be a constructive addition to PSO, the different

parameters were adjusted to see what levels were appropriate. Once the levels were

determined, two modifications to PSO were implemented: using orthogonal arrays to

determine particle starting locations, and biasing pheromone dropping based on the objective

function value.

4.2 PSO vs. Pheromone PSO

 To see if pheromone PSO was a good addition to PSO, the results of the standard

PSO algorithm were compared to those of the pheromone PSO algorithm. The results of

these comparisons are shown below for all four models:

Figure 3 - Comparison between PSO and pheromone PSO on the lamp model.

1,734,051 1,713,075

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Pheromone PSO PSO

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

PSO vs. Pheromone PSO on Maximization of Lamp

Model

Average OF

Std Dev

www.manaraa.com

29

Figure 4 - Comparison between PSO and pheromone PSO on AAAS model.

Figure 5 - Comparison between PSO and pheromone PSO on catalog center model.

279,353 289,959

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Pheromone PSO PSO

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

PSO vs. Pheromone PSO on Minimization of AAAS

Model

Average OF

Std Dev

12,674,758 12,601,100

68,493 3,387
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

Pheromone PSO PSO

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

PSO vs. Pheromone PSO on Minimization of Catalog

Center Model

Average OF

Std Dev

www.manaraa.com

30

Figure 6 - Comparison between PSO and pheromone PSO on distribution center model.

As illustrated in Figure 3 - Figure 6, the model using pheromone PSO resulted in a

better average objective function and lower standard deviation in three of the four models

tested. This shows that for most of the models tested, pheromone PSO solutions were better

than those of standard PSO.

4.3 Selection of Parameter Levels for Pheromone PSO

The next step was to determine parameter levels for the pheromone PSO algorithm.

Pheromone PSO was tested to see, if properly configured, how its solutions compared to

those of OptQuest on a number of objective function calculations.

4.3.1 Developing Parameter Settings

To develop parameter settings, the sensitivity of all pertinent controls described in

section 3.5 were tested individually, varying the test parameter and holding the rest of the

parameters constant. This was done for all four models. One example for each parameter is

302,228
318,795

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Pheromone PSO PSO

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

PSO vs. Pheromone PSO on Minimization of Distribution

Center Model

Average OF

Std Dev

www.manaraa.com

31

shown below, with brief discussion of the resultant trends, the additional graphs can be seen

in Appendix IX – Parameter Adjustment.

Figure 7 - Effect of adjusting swarm size on distribution center model.

Figure 7 shows that, for the distribution center model, as the swarm size increased the

average objective function decreased and the number of objective function calculations

increased. The AAAS and catalog center models had the same relationships between swarm

size, objective function, and objective function calculations. Conversely, the lamp model had

no consistent decrease in objective function as the swarm size was increased. The trend in

Figure 7 makes intuitive sense, being that when more particles are in the system, more

particles are trying to find the best solution. Consequently, the objective function is

calculated more, and the model takes more computational time to converge on a solution.

Figure 7 also illustrates that a good setting for this problem is a swarm size of approximately

25-35 particles, since this range has relatively low objective function values compared to the

number of iterations needed to converge.

0

200

400

600

800

1000

1200

1400

260000

270000

280000

290000

300000

310000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Swarm Size

Effect of Adjusting Swarm Size on

Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

32

Figure 8 - Effect of adjusting convergence criterion on AAAS model.

Figure 8 shows the effect that the convergence criterion has on the objective function

value and the number of objective function calculations. In Figure 8, as the convergence

criterion was increased, the average objective function value improved and the number of

calculations increased. The other three models followed the same trend. This makes intuitive

sense, because the more time the algorithm has to find a better solution, the better the chance

that the algorithm will converge. Figure 8 also shows that a good setting for the convergence

criterion in this problem is 20 – 25 iterations, since this range has a good ratio of the average

objective function value to number of objective function calculations.

0

500

1000

1500

2000

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Convergence Criteria

Effect of Adjusting Convergence Criteria on

AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

33

Figure 9 - Effect of adjusting C1 and C2 on distribution center model.

Figure 9 shows the effect that adjusting c1 and c2 had on the objective function value

and the number of objective function calculations. As shown in Figure 9, there was not a

clear trend on the effect of adjusting c1 and c2, but values of 1.5 and 3-3.5 appear to be good

choices. The other three models had a similar lack of general trend. In the AAAS model, a

value of 2 appeared to be a good level, and the other two models had no apparent best

location.

0

200

400

600

800

1000

275000

280000

285000

290000

295000

300000

305000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C1 and C2 Level

Effect of Adjusting C1 and C2 on

Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

34

Figure 10 - Effect of adjusting C3 on AAAS model.

Figure 10 shows the effect that adjusting c3 had on the objective function value and

the number of objective function calculations. As shown in Figure 10, the number of

objective function calculations behaved like a fourth-order polynomial equation, and the

average objective function value behaved like a quadratic equation. This makes sense

because, at the extreme locations around one and six, the algorithm moved too chaotically

and converged prematurely. In the middle (around 3.5-4) the algorithm converged quickly

and to a good location. While the second and fourth order relationships were not nearly as

apparent on the other three models, all of the models performed well with a c3 value of

approximately 3-4.

0

200

400

600

800

1000

1200

1400

1600

1800

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2 4 6 8

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C3 Level

Effect of Adjusting C3 on AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

35

Figure 11 - Effect of adjusting pheromone release rate on lamp model.

Figure 11 shows the effect that adjusting pheromone release rate had on the objective

function value and the number of objective function calculations. As shown in Figure 11,

there was not a clear trend on the effect of adjusting the pheromone release rate, but a rate of

45-50 percent appears to be a good choice, being that they were the only consecutive

parameter levels to converge to an objective function value less than 1,740,000 in fewer than

1000 iterations. The other three models also performed well in the 40 to 50 percent range.

0

200

400

600

800

1000

1200

1400

1600

1710000

1720000

1730000

1740000

1750000

1760000

1770000

1780000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Percentage of Pheromones Released

Effect of Adjusting Pheromone Release

Rate on Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

36

Figure 12 - Effect of adjusting pheromone decay factor on lamp model.

Figure 12 shows the effect that adjusting the pheromone decay factor had on the

objective function value and the number of objective function calculations. As shown in

Figure 12, there was not a clear trend on the effect of adjusting the pheromone decay factor,

but as the parameter reached 0.8 and above, the results seem significantly more consistent,

suggesting that a value of 0.9-0.95 may be appropriate. The other three models had no clear

trends, with the best values ranging from 0.8-0.95.

0

200

400

600

800

1000

1200

1400

1700000

1720000

1740000

1760000

1780000

1800000

0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Decay Factor

Effect of Adjusting Pheromone Decay

Factor on Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

37

Figure 13 - Effect of adjusting weighted inertia factor on distribution center model.

Figure 13 shows the effect that adjusting the weighted inertia factor had on the

objective function value and the number of objective function calculations. As shown in

Figure 13, there was not a clear trend on the effect of adjusting the weighted inertia factor. In

the AAAS model and the catalog center models, a value of 0.9 performed well.

Figure 14 - Effect of adjusting maximum velocity allowed on lamp model.

0

100

200

300

400

500

600

700

275000

280000

285000

290000

295000

300000

305000

310000

0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

WIF Level

Effect of Adjusting WIF on Distribution

Center Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1600

1680000

1700000

1720000

1740000

1760000

1780000

1800000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Maximum Velocity Allowed by Percent of Variables Range

Effect of Adjusting Maximum Velocity Allowed

on Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

38

Figure 14 shows the effect that adjusting the maximum velocity allowed had on the

objective function value and the number of objective function calculations. As shown in

Figure 14, there was not a clear trend on the effect of adjusting the maximum velocity

allowed, as there are local minima around 0.25, 0.7 and 0.95. A maximum velocity allowance

of 95% appears to be the best of that subset, with neighboring points also being good

solutions.

4.3.2 Summarizing Parameter Effects

Based on the data collected from all four models for the nine control parameters for

PSO, the settings that work well for the tested models are described in Table 2 :

Table 2 - Tuned parameter levels

Parameter Standard Value Tuned Level Units

c1 2 1.75 NA

c2 2 1.75 NA

c3 4 3.75 NA

Weighted inertia

factor

5% 10% Percentage decrease

Pheromone

decay factor

5% 7.5% Percentage decrease

Pheromones

dropped during

first iteration

50% 47.5% Percentage of global
best

Maximum

velocity

80% 95% Percentage of variable
range

Swarm size 30 25 Number of members

Iterations until

convergence

20 23 Number of iterations
without an improving
solution

www.manaraa.com

39

4.3.3 Testing PSO vs. OptQuest

The settings from the previous section were used to compare the speed and quality of

solutions from pheromone PSO to those of the commercial optimization software, OptQuest.

Each sample point was run ten times and the average was used to calculate the objective

function value. The results from these tests are shown in the graphs that follow:

Figure 15- Minimization of AAAS using OptQuest vs. pheromone PSO.

As the above graph clearly shows, the PSO algorithm outperformed the OptQuest

model on the AAAS model; PSO converged to a solution that was 39,000 units lower

(443,469 units vs. 482,536 units).

300000

400000

500000

600000

700000

800000

900000

1000000

0 200 400 600 800 1000M
in

im
u

m
 O

b
je

ct
iv

e
 F

u
n

ct
io

n
 V

a
lu

e

Objective Function Calculations

Minimization of AAAS Model using OptQuest

vs. Pheromone PSO

PSO

OptQuest

www.manaraa.com

40

Figure 16 - Maximization of lamp model using OptQuest vs. pheromone PSO.

As illustrated by the graph above, the PSO algorithm outperformed the OptQuest

model on the lamp model; PSO converged to a solution that had a total profit of 929,005

units higher than that of OptQuest (1,674,900 units vs. 745,895 units), or a 124% increase.

Figure 17 - Minimization of distribution center model using OptQuest vs. pheromone PSO.

100000

300000

500000

700000

900000

1100000

1300000

1500000

1700000

0 200 400 600 800 1000 1200 1400

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Maximization of Lamp Model using

OptQuest vs. Pheromone PSO

PSO

OptQuest

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 200 400 600 800 1000 1200 1400

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Minimization of Distribution Center Model

using OptQuest vs. Pheromone PSO

PSO

OptQuest

www.manaraa.com

41

In the comparison of OptQuest vs. pheromone PSO on the distribution center model,

a few modifications to the model were necessary to allow OptQuest to adjust the door

locations. The adapted model was used for both tests, and the optimization runs were then

compared. The graph above shows that PSO outperformed OptQuest on optimizing the

distribution center model; PSO converged to a solution that had a total profit of 689,281 units

lower than that of OptQuest (1,519,528 units vs. 830,247 units), or a 45% decrease.

Attempting to solve this model also exposed a limitation to OptQuest: OptQuest only

recognizes resources and variables as controls that can be adjusted in its optimization. This

increased flexibility is an additional benefit to using direct coding approach to control and

heuristically optimize the decision variables in the simulation.

Figure 18 - Minimization of catalog center using OptQuest vs. pheromone PSO.

12000000

13000000

14000000

15000000

16000000

17000000

18000000

0 100 200 300 400 500 600

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Objective Function Calculations

Minimization of Catalog Center using

OptQuest vs. Pheromone PSO

PSO

OptQuest

www.manaraa.com

42

In the graph above, PSO algorithm performed slightly better than OptQuest on the

catalog center model; PSO converged to a solution that had a total cost 185,240 units lower

than OptQuest (12,620,760 units vs. 12,806,000 units), or a 1.4% decrease.

These tests show that, for the models tested, pheromone PSO was able to find a better

solution than an OptQuest model in the same number of objective function calculations.

Although, only in the lamp model can the solution be shown as statistically different.

4.4 Modification using Orthogonal Arrays and Biased Starting

Location

The final experiment tested was to see if two modifications to the algorithm could

improve the solution quality and/or decrease the time to convergence. These changes were

made in all four models, and the results from the tests are shown below:

Figure 19 - Effects of modifications to pheromone PSO on number of objective function calculations for lamp model.

1,140 1,069
1,272

1,635

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Pheromone

PSO

Pheromone

PSO Best

70%

Orthogonal Orthogonal

and Best

70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

Optimization of Lamp Model - Comparison of Objective Function

(OF) Calculations until Convergence

Average OF Calculations

Std Dev

www.manaraa.com

43

Figure 20 - Effects of modifications to pheromone PSO on maximization of objective function for lamp model.

Above, Figure 19 and Figure 20 show that using pheromone PSO with the best 70%

of the particles releasing pheromones converged in the shortest amount of time and to the

best solution. While pheromone PSO with the best 70% of particles releasing pheromones

had a higher average solution using a 95% C.I., there is no statistical difference between the

four tests.

1,734,051 1,765,160 1,710,778 1,743,345

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Pheromone PSO Pheromone PSO

Best 70%

Orthogonal Orthogonal and

Best 70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Maximization of Lamp Model - Comparison of Average Objective

Function (OF) Value

Average OF

Std Dev OF

www.manaraa.com

44

Figure 21 - Effects of modifications to pheromone PSO on number of objective function calculations for AAAS

model.

Figure 22 - Effects of modifications to pheromone PSO on minimization of objective function for AAAS model.

Above, Figure 21 and Figure 22 show that when using an orthogonal array to place

the initial particles and having the best 70% of the particles release a pheromone, the

1,555

2,300

1,296
1,134

0

500

1,000

1,500

2,000

2,500

Pheromone

PSO

Pheromone

PSO Best

70%

Orthogonal Orthogonal

and Best

70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

Minimization of AAAS Model - Comparison of Average Number

Objective Function (OF) Calculations

Average OF Calculations

Std Dev

279,353 266,631

333,664

202,332

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Pheromone

PSO

Pheromone

PSO Best 70%

Orthogonal Orthogonal

and Best 70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Minimization of AAAS Model - Comparison of Average Objective

Function (OF) Value

Average OF

Std Dev

www.manaraa.com

45

algorithm converged in the shortest amount of time and to the best solution. It is noteworthy

that when using a 95% C.I. there is not a statistical difference between the orthogonal test

and the pheromone tests. An example of the statistical comparison can be seen in Appendix

VIII.

Figure 23 - Effects of modifications to pheromone PSO on number of objective function calculations for catalog

center model.

1,156

869

1,274

780

0

200

400

600

800

1,000

1,200

1,400

Pheromone

PSO

Pheromone

PSO Best 70%

Orthogonal Orthogonal

and Best 70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

Minimization of Catalog Center Model - Comparison of Average

Number of Objective Function (OF) Calculations

Average OF Calculations

Std Dev

www.manaraa.com

46

Figure 24 - Effects of modifications to pheromone PSO on minimization of objective function for catalog center

model.

Above, Figure 23 and Figure 24 show that using an orthogonal array and having the

best 70% of the particles releasing pheromones converged in the shortest amount of time.

However, the orthogonal array method had the best average solution. There is not a statistical

difference between the orthogonal test and the pheromone tests.

12,674,758 12,648,356 12,605,450 12,608,319

68,493 77,676 6,079 2,804
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

Pheromone

PSO

Pheromone

PSO Best 70%

Orthogonal Orthogonal

and Best 70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Minimization of Catalog Center Model - Comparison of

Average Objective Function (OF) Value

Average OF

Std Dev

www.manaraa.com

47

Figure 25 - Effects of modifications to pheromone PSO on number of objective function calculations for distribution

center model.

Figure 26 - Effects of modifications to pheromone PSO on minimization of objective function for distribution center

model.

Above, Figure 25 and Figure 26 show that using pheromone PSO with random

particles releasing pheromones converged in the shortest amount of time, and the pheromone

PSO with orthogonal starting locations and the best 70% of the particles releasing

448

580

488
533

0

100

200

300

400

500

600

700

Pheromone

PSO

Pheromone

PSO Best

70%

Orthogonal Orthogonal

and Best 70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

Optimization of Distribution Center Model - Comparison of

Objective Function (OF) Calculations until Convergence

Average OF Calculations

Std Dev

302,228 293,150 304,363 292,889

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Pheromone

PSO

Pheromone

PSO Best

70%

Orthogonal Orthogonal

and Best

70%

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Optimization of Distribution Center Model - Comparison

of Objective Function (OF) Value

Average OF

Std Dev

www.manaraa.com

48

pheromones had the best average solution. There is not a statistical difference between the

four tests.

4.4.1 Summary of Comparison

As illustrated by Figure 19 – Figure 26, utilizing orthogonal arrays and biasing the

release of pheromones to particles that have a comparatively good objective function value

has a positive impact on the quality of the solution for some models. In none of the cases was

the objective function in one method found to be statistically different and better than

pheromone PSO with random particles releasing pheromones. There was no clear best

method displaying a consistent best time to convergence. Three of the methods had the

smallest number of objective function calculations on at least one of the models tested.

www.manaraa.com

49

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

This paper tested three items: the performance of pheromone PSO vs. PSO, the

performance of pheromone PSO vs. OptQuest, and the performance benefit of algorithm

adjustments. This paper showed that adding digital pheromones to PSO is a constructive

addition to PSO. Pheromone PSO was compared to OptQuest, and pheromone PSO was able

to outperform on all models compared. This highlights the robustness of the algorithm. An

additional benefit that pheromone PSO had over OptQuest was that pheromone PSO was

able to use more controls as decision variables. OptQuest only allows users to adjust resource

levels and variables as decision variables, whereas with proper coding in pheromone PSO, an

additional production line can be added as a decision variable. Finally, two modifications that

adjusted the start of the algorithm were tested, and it was shown that these modifications

were not able to consistently benefit the algorithm.

Possible extensions of this paper include testing more models to see if the same trends

hold true and testing how pheromone PSO works on models with more than 50 variables.

Additionally, testing the functionality and usability of using pheromone PSO to control major

adjustments to modeled production systems could prove beneficial, such as in cases where

complete revisions to production lines are decision variables. These tests would give more

insight on the performance of pheromone PSO with different problem types.

www.manaraa.com

50

REFERENCES

Al-Aomar, R. (2000) Product-Mix Analysis with Discrete Event Simulation. 2000 Winter

Simulation Conference, pp 1385—1392.

Alkhamis, T. and Ahmed, M. (2005) Simulation-based optimization for repairable systems

using particle swarm algorithm. 2005 Winter Simulation Conference, pp 857—861.

April, J., Glover, F., Kelly, J. and Laguna, M. (2001) Simulation/optimization “real-world”

applications. 2001 Winter Simulation Conference, pp 134—138.

Clerc, M. (1999) The swarm and the queen: toward a deterministic and adaptive particle

swarm optimization. Evolutionary Computation, Vol. 3, pp 1957.

Dahal, K.P., Galloway, S.J., Burt, G.M., McDonald, J.R. and Hopkins, I. (2005) A case study

of process facility optimization using discrete event simulation and genetic algorithm.

GECCO 2005, pp 2197—2198.

Eberhart, R. and Shi, Y. (2000) Comparing inertia weights and constriction factors in particle

swarm optimization. Evolutionary Computation, Vol. 1, pp 84—88.

Eberhart, R., Simpson, P. and Dobbins, R. (1996) Computational intelligence PC tools.

Boston: Academic Press Professional.

El-Gallad, A., El-Hawary, M. and Sallam A. (2001) Swarming of intelligent particles for

solving nonlinear constrained optimization problems. International Journal of

Engineering Intelligent Systems, Vol. 9, No. 3, pp 155—163.

El-Gallad, A., El-Hawary, M., Sallam, A. and Kalas, A. (2002) Enhancing the particle swarm

optimizer via proper parameter selection. 2002 IEEE Canadian Conference on

Electrical & Computer Engineering, pp 792—797.

www.manaraa.com

51

Gamardella, L. and Dorigo, M. (1996) Solving symmetric and asymmetric TSP’s by ant

colonies. Evolutionary Computation, pp 622—627.

Kalivarapu, V., Foo, J. and Winer, E. (2008) Improving solution characteristics of particle

swarm optimization using digital pheromones, 48th AIAA/ASME/ASCE/AHS/ASC

Structural Dynamics, and Materials Conference, pp 2180—2191.

Kelton, W., Sadowski, R. and Sturrock, D. (2004) Simulation with Arena. The McGraw-Hill

Companies, Inc.

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. IEEE International

Conference on Neural Networks, vol. 4, pp 1942—1948.

Kleijnen, J. and Wan, J. (2006) Optimization of simulated systems: OptQuest and

alternatives. Simulation Modeling Practice and Theory, Vol. 15, pp 354—362.

Konak, A. and Kulturel-Konak, S. (2005) Simulation optimization using tabu search: an

empirical study. 2005 Winter Simulation Conference, pp 2686-2692.

Koyama, A., Barolli, L., Matsumoto, K. and Apduhan, B. (2004) A GA-based multi-purpose

optimization algorithm for QoS routing. 18th International Conference of Advanced

Information Networking and Applications, vol. 1, pp 23—28.

Joines, J., Gupta, D., Gokee, M., King, R. and Kay, M. (2002) Supply chain multi-objective

simulation optimization. 2002 Winter Simulation Conference, pp 1306—1314.

Jones, M. and White, K. (2004) Stochastic approximation with simulated annealing as an

approach to global discrete-event simulation optimization. 2004 Winter Simulation

Conference, pp 500—507.

Lei, X. Shi, Z. (2007) The variations, combination strategies analysis of particle swarm

optimization. Third International Conference on Natural Computation.

www.manaraa.com

52

Li, Y. and Gong, S. (2003) Dynamic ant colony optimization for TSP. The International

Journal of Advanced Manufacturing Technology, Vol. 22, pp 528—533.

Lu, H. and Chen, W. (2008) Self-adaptive velocity particle swarm optimization for solving

constrained optimization problems. Journal of Global Optimization, vol. 41, pp 427—

445.

Manz, E., Haddock, J. and Mittenthal, J. (1989) Optimization of an automated manufacturing

system simulation model using simulated annealing. 1989 Winter Simulation

Conference Proceedings, pp 390—395.

Meketon, M. (1987) Optimization in simulation: A survey of recent results. 1987 Winter

Simulation Proceedings, pp 58-67.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953) Simulated

Annealing. Journal of Chemical Physics, vol. 21, pp 1087—1092.

Mo, J., Huang, M. and Wang, X. (2007) Optimal design of the real-time production control

system for a general single-product assembly line based on fuzzy logic control,

genetic algorithm and simulation. Fourth International Conference on Fuzzy systems

and Knowledge Discovery.

Persson, A., Grimm, H., Ng, A., Lezama, T., Ekberg, J., Falk, S. and Stablum, P. (2006)

Simulation-based multi-objective optimization of real-world scheduling problem.

2006 Winter Simulation Conference, pp 1757—1764.

Poli, R. (2008) Analysis of the publications on the applications of particle swarm

optimization. Journal of Artificial Evolution and Applications. vol. 8.

Shi, Y. and Eberhart, R. (1998a) A modified particle swarm optimizer. Evolutionary

Computation Proceedings, pp 69—73.

www.manaraa.com

53

Shi, Y. and Eberhart, R. (1998b) Parameter selection in particle swarm optimization. Lecture

Notes in Computer Science. Vol. 1447, pp 591.

The University of York. Math Department. L27 Orthogonal Array.

http://www.york.ac.uk/depts/maths/tables/l27.htm. Accessed September, 29th 2008.

Tandiono, E. and Gemmill, D. (1994) Stochastic optimization of the cost of automatic

assembly systems. European Journal of Operational Research, vol. 77, pp 303—313.

Veeramachaneni, K., Peram, T., Mohon, C. and Osadciw, L. (2003) Optimization using

particle swarms with near neighbor interactions. GECCO 2003, pp 110—121.

Wang, B., Wang, S., Du, H. and Qu, P. (2003) Parameter optimization in complex industrial

process control based on improved fuzzy-GA. International Conference on Machine

Learning and Cybernetics, vol. 4, pp 2512—1215.

Wu, D., Lu, M. and Zhang, J. (2005) Efficient optimization procedures for stochastic

simulation systems. Fourth International Conference on Machine Learning and

Cybernetics, pp 2895—2900.

Yang, T., Kuo, Y. and Chang, I. (2004) Tabu-search simulation optimization approach for

flow-shop scheduling with multiple processors — a case study. International Journal

of Production Research, 42:19, 4015—4030.

Yun, I. and Park, B. (2006) Application of stochastic optimization method for an urban

corridor. 2006 Winter Simulation Conference, pp 1493—1499.

Zhang, H. (2008) Multi-objective simulation-optimization for earthmoving operations.

Automation in Construction, vol. 18, pp 79-86.

Zhang, L., Yu, H. and Hu, S. (2005) Optimal choice of parameters for particle swarm

optimization. Journal of Zhenjiang University: Science, Vol. 6, pp. 528—534.

www.manaraa.com

54

Zheng, Y., Ma, L., Zhang, L. and Quin, J. (2003) On the convergence analysis and parameter

selection in particle swarm optimization. Second International Conference on

Machine Learning and Cybernetics, pp 1802—1807.

www.manaraa.com

55

APPENDIX I – L27 ARRAY

Table 3 - L27 array from The University of York

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2 2

3 1 1 1 1 3 3 3 3 3 3 3 3 3

4 1 2 2 2 1 1 1 2 2 2 3 3 3

5 1 2 2 2 2 2 2 3 3 3 1 1 1

6 1 2 2 2 3 3 3 1 1 1 2 2 2

7 1 3 3 3 1 1 1 3 3 3 2 2 2

8 1 3 3 3 2 2 2 1 1 1 3 3 3

9 1 3 3 3 3 3 3 2 2 2 1 1 1

10 2 1 2 3 1 2 3 1 2 3 1 2 3

11 2 1 2 3 2 3 1 2 3 1 2 3 1

12 2 1 2 3 3 1 2 3 1 2 3 1 2

13 2 2 3 1 1 2 3 2 3 1 3 1 2

14 2 2 3 1 2 3 1 3 1 2 1 2 3

15 2 2 3 1 3 1 2 1 2 3 2 3 1

16 2 3 1 2 1 2 3 3 1 2 2 3 1

17 2 3 1 2 2 3 1 1 2 3 3 1 2

18 2 3 1 2 3 1 2 2 3 1 1 2 3

19 3 1 3 2 1 3 2 1 3 2 1 3 2

20 3 1 3 2 2 1 3 2 1 3 2 1 3

21 3 1 3 2 3 2 1 3 2 1 3 2 1

22 3 2 1 3 1 3 2 2 1 3 3 2 1

23 3 2 1 3 2 1 3 3 2 1 1 3 2

24 3 2 1 3 3 2 1 1 3 2 2 1 3

25 3 3 2 1 1 3 2 3 2 1 2 1 3

26 3 3 2 1 2 1 3 1 3 2 3 2 1

27 3 3 2 1 3 2 1 2 1 3 1 3 2

www.manaraa.com

56

APPENDIX II – SAMPLE CODE PHEROMONE PSO

Sub Pheromone PSO()

Dim Xmin(10) As Integer 'Array for Minimum control values
Dim Xmax(10) As Integer 'Array for Minimum control values
Dim X(100, 10) As Integer 'Array for each particles current control values
Dim F(100) As Double 'Objective Function Value for each particle
Dim V(100, 10, 1) As Single 'Current and last iterations velocity for each particle,
Dim Pbest(100, 11) As Single 'personal best location for each particle(P(i,0-10)) and
personal best objective function (P(i,11))
Dim Pheromone(1000, 11) As Single 'location (Pheromone(i,0-10)) and strength
(Pheromone(i,11))of pheromone field
Dim Gbestpoint(10) As Single 'Gbest location
Dim Gbest As Single 'Global best objective function value
Dim c As Integer ' convergence iteration counter
Dim w As Single ' weighted Inertia starting value
Dim PST As Single 'Target Pheromone's Strength
Dim PS As Single 'Pheromone Strength
Dim TP As Integer 'Target Pheromone
Dim count As Integer 'total iteration counter, counting 0
Dim phr As Single 'Percent of objective in which Pheromones are released
Dim RLF As Single 'Range Limit Factor
Dim pdf As Single ' Pheromone Decay Factor
Dim WIF As Single 'Weighted inertia factor
Dim ConCrit As Integer ' Number of interations until convergence
Dim c1 As Single 'weighted factor for global best influence
Dim c2 As Single 'weighted factor for personal best influence
Dim c3 As Single 'weighted factor for pheromone field influence
Dim N As Integer 'Number of Particles, maximum of 100 allowed based on arrays defined
earlier
Dim modelout As String 'data extracted from text file from arena
Dim Starttime As String ' Start time of the program
Dim Finishtime As String 'Completion time of the program
Dim Cp As Single 'variable to compute objective function
Dim Cf As Single 'variable to compute objective function
Dim CC As Single 'variable to compute objective function
Dim Ch As Single 'variable to compute objective function
Dim Cg As Single 'variable to compute objective function
Dim i As Integer 'counter
Dim j As Integer 'counter
Dim k As Integer 'counter
Dim l As Integer 'counter
Dim p As Integer 'counter for total number of pheromones in the system

www.manaraa.com

57

'Dimension the variable m as a model object

Dim m As Model
Dim m1 As Model
Dim m2 As Model
Dim m3 As Model
Dim m4 As Model
Dim m5 As Model
Dim m6 As Model
Dim m7 As Model
Dim m8 As Model
Dim m9 As Model
Dim m10 As Model

'Set m equal to this models object

Set m = ActiveModel

'm1-m10 are used to define various submodels in the program
Set m1 = m.Submodels(m.Submodels.Find(smFindTag, "object.S1")).Model
Set m2 = m.Submodels(m.Submodels.Find(smFindTag, "object.S2")).Model
Set m3 = m.Submodels(m.Submodels.Find(smFindTag, "object.S3")).Model
Set m4 = m.Submodels(m.Submodels.Find(smFindTag, "object.S4")).Model
Set m5 = m.Submodels(m.Submodels.Find(smFindTag, "object.S5")).Model
Set m6 = m.Submodels(m.Submodels.Find(smFindTag, "object.S6")).Model
Set m7 = m.Submodels(m.Submodels.Find(smFindTag, "object.S7")).Model
Set m8 = m.Submodels(m.Submodels.Find(smFindTag, "object.S8")).Model
Set m9 = m.Submodels(m.Submodels.Find(smFindTag, "object.S9")).Model
Set m10 = m.Submodels(m.Submodels.Find(smFindTag, "object.S10")).Model
Model.QuietMode = True

'Set start time of model

 Starttime = Format(Time, "Long Time")

'Set starting values for various parameters

 RLF = 1
 phr = 0.5
 pdf = 0.95
 c1 = 2
 c2 = 2
 c3 = 4
 WIF = 0.95
 ConCrit = 5

www.manaraa.com

58

 count = 0
 c = 1
 w = 1
 p = 0

'Enter population size less than or equal to 100

 N = 20

'Set starting Gbest value as a large value for minimization problem

 Gbest = 100000000

'Set min and max values for all model controls

 Xmax(0) = 80
 Xmin(0) = 1
 Xmax(1) = 8
 Xmin(1) = 1
 Xmax(2) = 8
 Xmin(2) = 1
 Xmax(3) = 8
 Xmin(3) = 1
 Xmax(4) = 8
 Xmin(4) = 1
 Xmax(5) = 8
 Xmin(5) = 1
 Xmax(6) = 8
 Xmin(6) = 1
 Xmax(7) = 8
 Xmin(7) = 1
 Xmax(8) = 8
 Xmin(8) = 1
 Xmax(9) = 8
 Xmin(9) = 1
 Xmax(10) = 8
 Xmin(10) = 1

'Set the starting value for all particles as a random location between controls

minimum and maximum

 For i = 0 To N
 For j = 0 To 10
 X(i, j) = Xmin(j) + Rnd() * (Xmax(j) - Xmin(j))
 Next
 Next

www.manaraa.com

59

'Calculate the objective function for all particles

 For i = 0 To N
'Based on particles location, adjusts controls in Arena

 m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2
Process.Queue) < " & X(i, 1)
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1)
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3
Process.Queue) < " & X(i, 2)
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2)
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4
Process.Queue) < " & X(i, 3)
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3)
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5
Process.Queue) < " & X(i, 4)
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4)
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6
Process.Queue) < " & X(i, 5)
m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5)
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7
Process.Queue) < " & X(i, 6)
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6)
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8
Process.Queue) < " & X(i, 7)
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7)
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9
Process.Queue) < " & X(i, 8)
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8)
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10
Process.Queue) < " & X(i, 9)
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9)
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1
Process.Queue) < " & X(i, 10)
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10)
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0)
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"

'runs the model

 m.Go

www.manaraa.com

60

'Waits until the model is finished running

If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication
Then m.End
End If

'Collected output data from text files and sets as modelout

 Open "C:\ AASOutput.txt" For Input As #1
 Line Input #1, modelout
 Close #1
'Based on results from model calculates objective function

 Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the
pallets over 10 years
 ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) +
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10)))
 Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength +
10)))
 CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that
spreads the cost of the pallets over 10 years
 Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1
 Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is a 6 second cycle time, and $10
per unit

 F(i) = Cp + Cf + CC + Ch + Cg

'Since this is the first iteration sets the current location as the particles best

location

 Pbest(i, 11) = F(i)
 Pbest(i, 0) = X(i, 0)
 Pbest(i, 1) = X(i, 1)
 Pbest(i, 2) = X(i, 2)
 Pbest(i, 3) = X(i, 3)
 Pbest(i, 4) = X(i, 4)
 Pbest(i, 5) = X(i, 5)
 Pbest(i, 6) = X(i, 6)
 Pbest(i, 7) = X(i, 7)
 Pbest(i, 8) = X(i, 8)
 Pbest(i, 9) = X(i, 9)
 Pbest(i, 10) = X(i, 10)
'Checks to see if this particles current location is better than the current global

best, if it is better sets current particles location as gbest

 If Pbest(i, 11) < Gbest Then

www.manaraa.com

61

 Gbest = Pbest(i, 11)
 Gbestpoint(0) = X(i, 0)
 Gbestpoint(1) = X(i, 1)
 Gbestpoint(2) = X(i, 2)
 Gbestpoint(3) = X(i, 3)
 Gbestpoint(4) = X(i, 4)
 Gbestpoint(5) = X(i, 5)
 Gbestpoint(6) = X(i, 6)
 Gbestpoint(7) = X(i, 7)
 Gbestpoint(8) = X(i, 8)
 Gbestpoint(9) = X(i, 9)
 Gbestpoint(10) = X(i, 10)
'Records in a test file when a new gbest is found

 Open "C:\ModelRun.txt" For Append As #1
 Print #1, "New G Best"; Tab; count; Tab; Gbest
 Close #1
 End If
 Next

'Random drops pheromones for (PHR)% of the population

 For i = 0 To N
 If Rnd() < phr Then
 'drop pheromone
 Pheromone(p, 0) = X(i, 0)
 Pheromone(p, 1) = X(i, 1)
 Pheromone(p, 2) = X(i, 2)
 Pheromone(p, 3) = X(i, 3)
 Pheromone(p, 4) = X(i, 4)
 Pheromone(p, 5) = X(i, 5)
 Pheromone(p, 6) = X(i, 6)
 Pheromone(p, 7) = X(i, 7)
 Pheromone(p, 8) = X(i, 8)
 Pheromone(p, 9) = X(i, 9)
 Pheromone(p, 10) = X(i, 10)
 'pheromone strength
 Pheromone(p, 11) = 1
'Marks counter p that another pheromone has been dropped

 p = p + 1
 End If
 Next
'Sets the starting velocity for all particles as 0

 For i = 0 To N

www.manaraa.com

62

 For j = 0 To 10
 V(i, j, 0) = 0
 Next
 Next
'This completes the start up of the algorithm

'Algorithm then continues until ConCrit number of iterations pass without a

change in the objective function value

 Do Until c > ConCrit
'Updates iterations counters

 count = count + 1
 c = c + 1
'Sets target pheromones for all particles

 For i = 0 To N
 PS = 0
 PST = -1000
 For j = 0 To p - 1
'Calculates the -distance*strength between each particle and each pheromone

 PS = (1 - ((X(i, 0) - Pheromone(j, 0)) ^ 2 + (X(i, 1) - Pheromone(j, 1)) ^ 2 + (X(i,
2) - Pheromone(j, 2)) ^ 2 + (X(i, 3) - Pheromone(j, 3)) ^ 2 + (X(i, 4) - Pheromone(j, 4)) ^ 2 +
(X(i, 5) - Pheromone(j, 5)) ^ 2 + (X(i, 6) - Pheromone(j, 6)) ^ 2 + (X(i, 7) - Pheromone(j, 7))
^ 2 + (X(i, 8) - Pheromone(j, 8)) ^ 2 + (X(i, 9) - Pheromone(j, 9)) ^ 2 + (X(i, 10) -
Pheromone(j, 10)) ^ 2) ^ 0.5) * Pheromone(j, 11)
'If a pheromone is found to have a better strength it is selected as the target

pheromone

 If PS > PST Then
 PST = PS
 TP = j
 End If
 Next
'Updates the velocity vector

 For j = 0 To 10
 V(i, j, 1) = w * V(i, j, 0) + c1 * Rnd() * (Pbest(i, 1) - X(i, j)) + c2 * Rnd() *
(Gbestpoint(j) - X(i, j)) + c3 * Rnd() * (Pheromone(TP, j) - X(i, j))
'If velocity is greater than the variable range * RLF, the velocity is set to the

variable range * RLF

 If V(i, j, 1) > (Xmax(j) - Xmin(j) * RLF) Then
 V(i, j, 1) = (Xmax(j) - Xmin(j) * RLF)
 End If

www.manaraa.com

63

'If velocity is less than the variable range * RLF, the velocity is set to the

variable range * RLF

 If V(i, j, 1) < -(Xmax(j) - Xmin(j) * RLF) Then
 V(i, j, 1) = -(Xmax(j) - Xmin(j) * RLF)
 End If
 V(i, j, 0) = V(i, j, 1)
 Next
 Next
'Adjusts particles position based on velocity

 For i = 0 To N
 For j = 0 To 10
 X(i, j) = X(i, j) + V(i, j, 1)
 If X(i, j) < Xmin(j) Then
 X(i, j) = Xmin(j)
 End If
 Next
 Next

For i = 0 To N
'Based on particles location, adjusts controls in Arena

m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2
Process.Queue) < " & X(i, 1)
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1)
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3
Process.Queue) < " & X(i, 2)
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2)
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4
Process.Queue) < " & X(i, 3)
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3)
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5
Process.Queue) < " & X(i, 4)
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4)
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6
Process.Queue) < " & X(i, 5)
 m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5)
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7
Process.Queue) < " & X(i, 6)
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6)
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8
Process.Queue) < " & X(i, 7)
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7)
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9
Process.Queue) < " & X(i, 8)

www.manaraa.com

64

m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8)
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10
Process.Queue) < " & X(i, 9)
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9)
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1
Process.Queue) < " & X(i, 10)
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10)
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0)
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
'Runs the model

 m.Go
'Waits until the model is finished running

 If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then
m.End

End If
'Collected output data from text files and sets as modelout

 Open "C:\Thesis\AASOutput.txt" For Input As #1
 Line Input #1, modelout
 Close #1
'Based on results from model calculates objective function

 Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the
pallets over 10 years
 ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) +
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10)))
 Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength +
10)))
 CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that
spreads the cost of the pallets over 10 years
 Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1
 Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is an 6 second cycle time, and $10
per unit

 F(i) = Cp + Cf + CC + Ch + Cg

 'If the current particles location is greater than that particles personal

best and particle is feasible, then pbest is updated

 If F(i) < Pbest(i, 11) Then

www.manaraa.com

65

 For j = 0 To 10

 'Checks if current particle is feasible

 If X(i, j) > Xmax(j) Then
 Exit For
 End If
 If X(i, j) < Xmin(j) Then
 Exit For
 End If
 If j = 10 Then
 Pbest(i, 11) = F(i)
 Pbest(i, 0) = X(i, 0)
 Pbest(i, 1) = X(i, 1)
 Pbest(i, 2) = X(i, 2)
 Pbest(i, 3) = X(i, 3)
 Pbest(i, 4) = X(i, 4)
 Pbest(i, 5) = X(i, 5)
 Pbest(i, 6) = X(i, 6)
 Pbest(i, 7) = X(i, 7)
 Pbest(i, 8) = X(i, 8)
 Pbest(i, 9) = X(i, 9)
 Pbest(i, 10) = X(i, 10)

 'A pheromone is release each time a particle finds a new p best

 Pheromone(p, 0) = X(i, 0)
 Pheromone(p, 1) = X(i, 1)
 Pheromone(p, 2) = X(i, 2)
 Pheromone(p, 3) = X(i, 3)
 Pheromone(p, 4) = X(i, 4)
 Pheromone(p, 5) = X(i, 5)
 Pheromone(p, 6) = X(i, 6)
 Pheromone(p, 7) = X(i, 7)
 Pheromone(p, 8) = X(i, 8)
 Pheromone(p, 9) = X(i, 9)
 Pheromone(p, 10) = X(i, 10)

 'Pheromone strength

 Pheromone(p, 11) = 1
 p = p + 1

 'If the current location is also better then Global best, gbest is

updated

www.manaraa.com

66

 If Pbest(i, 11) < Gbest Then

 'Convergence criterion counter is updated

 c = 1
 Gbest = Pbest(i, 11)
 Gbestpoint(0) = X(i, 0)
 Gbestpoint(1) = X(i, 1)
 Gbestpoint(2) = X(i, 2)
 Gbestpoint(3) = X(i, 3)
 Gbestpoint(4) = X(i, 4)
 Gbestpoint(5) = X(i, 5)
 Gbestpoint(6) = X(i, 6)
 Gbestpoint(7) = X(i, 7)
 Gbestpoint(8) = X(i, 8)
 Gbestpoint(9) = X(i, 9)
 Gbestpoint(10) = X(i, 10)

 'Prints current solution to file

 Open "C:\ModelRun.txt" For Append As #1
 Print #1, "New G Best"; Tab; count; Tab; Gbest
 Close #1
 End If
 End If
 Next
 End If
 Next

 'Before the start of the next iteration the pheromone field is decayed

 For k = 0 To p
 Pheromone(k, 11) = Pheromone(k, 11) * pdf
 Next

 'Merges pheromones together if they are effectively overlapping

 For k = 0 To p
 For l = k To p
 If k <> l Then

If ((Pheromone(k, 0) - Pheromone(l, 0)) ^ 2 + (Pheromone(k, 1) -
Pheromone(l, 1)) ^ 2 + (Pheromone(k, 2) - Pheromone(l, 2)) ^ 2 +
(Pheromone(k, 3) - Pheromone(l, 3)) ^ 2 + (Pheromone(k, 4) - Pheromone(l,
4)) ^ 2 + (Pheromone(k, 5) - Pheromone(l, 5)) ^ 2 + (Pheromone(k, 6) -
Pheromone(l, 6)) ^ 2 + (Pheromone(k, 7) - Pheromone(l, 7)) ^ 2 +

www.manaraa.com

67

(Pheromone(k, 8) - Pheromone(l, 8)) ^ 2 + (Pheromone(k, 9) - Pheromone(l,
9)) ^ 2 + (Pheromone(k, 10) - Pheromone(l, 10)) ^ 2) ^ 0.5 < 2 Then

 Pheromone(k, 11) = (Pheromone(k, 11) + Pheromone(l, 11)) / 2
 Pheromone(l, 11) = 0
 End If
 End If
 Next
 Next

 'Reduced weighted inertia factor and then optimization is continued until

convergence

 w = w * WIF
 Loop
'Once the convergence criterion, the finish time is recorded

Finishtime = Format(Time, "Long Time")
'Run statistics and best solution found is recorded to a file

Open "C:\OptimalOut.txt" For Append As #1
 Print #1, "Run length of " & count
 Print #1, Gbest
 Print #1, Gbestpoint(0)
 Print #1, Gbestpoint(1)
 Print #1, Gbestpoint(2)
 Print #1, Gbestpoint(3)
 Print #1, Gbestpoint(4)
 Print #1, Gbestpoint(5)
 Print #1, Gbestpoint(6)
 Print #1, Gbestpoint(7)
 Print #1, Gbestpoint(8)
 Print #1, Gbestpoint(9)
 Print #1, Gbestpoint(10)
 Print #1, Starttime
 Print #1, Finishtime
Close #1

End Sub

www.manaraa.com

68

APPENDIX III – SAMPLE CODE PSO

Sub PSO()

Dim Xmin(10) As Integer 'Array for Minimum control values
Dim Xmax(10) As Integer 'Array for Minimum control values
Dim X(100, 10) As Integer 'Array for each particles current control values
Dim F(100) As Double 'Objective Function Value for each particle
Dim V(100, 10, 1) As Single 'Current and last iterations velocity for each particle,
Dim Pbest(100, 11) As Single 'personal best location for each particle(P(i,0-10)) and
personal best objective function (P(i,11))
Dim Gbestpoint(10) As Single 'Gbest location
Dim Gbest As Single 'Global best objective function value
Dim c As Integer ' convergence iteration counter
Dim w As Single ' weighted Inertia starting value
Dim count As Integer 'total iteration counter, counting 0
Dim RLF As Single 'Range Limit Factor
Dim WIF As Single 'Weighted inertia factor
Dim ConCrit As Integer ' Number of interations until convergence
Dim c1 As Single 'weighted factor for global best influence
Dim c2 As Single 'weighted factor for personal best influence
Dim c3 As Single 'weighted factor for pheromone field influence
Dim N As Integer 'Number of Particles, maximum of 100 allowed based on arrays defined
earlier
Dim modelout As String 'data extracted from text file from arena
Dim Starttime As String ' Start time of the program
Dim Finishtime As String 'Completion time of the program
Dim Cp As Single 'variable to compute objective function
Dim Cf As Single 'variable to compute objective function
Dim CC As Single 'variable to compute objective function
Dim Ch As Single 'variable to compute objective function
Dim Cg As Single 'variable to compute objective function
Dim i As Integer 'counter
Dim j As Integer 'counter
Dim k As Integer 'counter
Dim l As Integer 'counter

'Dimension the variable m as a model object

Dim m As Model
Dim m1 As Model
Dim m2 As Model
Dim m3 As Model
Dim m4 As Model
Dim m5 As Model

www.manaraa.com

69

Dim m6 As Model
Dim m7 As Model
Dim m8 As Model
Dim m9 As Model
Dim m10 As Model

'Set m equal to this models object

Set m = ActiveModel

'm1-m10 are used to define various submodels in the program
Set m1 = m.Submodels(m.Submodels.Find(smFindTag, "object.S1")).Model
Set m2 = m.Submodels(m.Submodels.Find(smFindTag, "object.S2")).Model
Set m3 = m.Submodels(m.Submodels.Find(smFindTag, "object.S3")).Model
Set m4 = m.Submodels(m.Submodels.Find(smFindTag, "object.S4")).Model
Set m5 = m.Submodels(m.Submodels.Find(smFindTag, "object.S5")).Model
Set m6 = m.Submodels(m.Submodels.Find(smFindTag, "object.S6")).Model
Set m7 = m.Submodels(m.Submodels.Find(smFindTag, "object.S7")).Model
Set m8 = m.Submodels(m.Submodels.Find(smFindTag, "object.S8")).Model
Set m9 = m.Submodels(m.Submodels.Find(smFindTag, "object.S9")).Model
Set m10 = m.Submodels(m.Submodels.Find(smFindTag, "object.S10")).Model
Model.QuietMode = True

'Set start time of model

 Starttime = Format(Time, "Long Time")

'Set starting values for various parameters

 RLF = 1
 c1 = 2
 c2 = 2
 c3 = 4
 WIF = 0.95
 ConCrit = 5
 count = 0
 c = 1
 w = 1
 p = 0

'Enter population size less than or equal to 100

 N = 20

'Set starting Gbest value as a large value for minimization problem

 Gbest = 100000000

www.manaraa.com

70

'Set min and max values for all model controls

 Xmax(0) = 80
 Xmin(0) = 1
 Xmax(1) = 8
 Xmin(1) = 1
 Xmax(2) = 8
 Xmin(2) = 1
 Xmax(3) = 8
 Xmin(3) = 1
 Xmax(4) = 8
 Xmin(4) = 1
 Xmax(5) = 8
 Xmin(5) = 1
 Xmax(6) = 8
 Xmin(6) = 1
 Xmax(7) = 8
 Xmin(7) = 1
 Xmax(8) = 8
 Xmin(8) = 1
 Xmax(9) = 8
 Xmin(9) = 1
 Xmax(10) = 8
 Xmin(10) = 1

'Set the starting value for all particles as a random location between controls

minimum and maximum

 For i = 0 To N
 For j = 0 To 10
 X(i, j) = Xmin(j) + Rnd() * (Xmax(j) - Xmin(j))
 Next
 Next
'Calculate the objective function for all particles

 For i = 0 To N
'Based on particles location, adjusts controls in Arena

 m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2
Process.Queue) < " & X(i, 1)
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1)
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3
Process.Queue) < " & X(i, 2)
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2)

www.manaraa.com

71

m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4
Process.Queue) < " & X(i, 3)
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3)
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5
Process.Queue) < " & X(i, 4)
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4)
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6
Process.Queue) < " & X(i, 5)
m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5)
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7
Process.Queue) < " & X(i, 6)
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6)
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8
Process.Queue) < " & X(i, 7)
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7)
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9
Process.Queue) < " & X(i, 8)
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8)
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10
Process.Queue) < " & X(i, 9)
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9)
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1
Process.Queue) < " & X(i, 10)
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10)
m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0)
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"

'runs the model

 m.Go

'Waits until the model is finished running

If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then
m.End

End If

'Collected output data from text files and sets as modelout

 Open "C:\ AASOutput.txt" For Input As #1

www.manaraa.com

72

 Line Input #1, modelout
 Close #1
'Based on results from model calculates objective function

 Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the
pallets over 10 years
 ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) +
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10)))
 Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength +
10)))
 CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that
spreads the cost of the pallets over 10 years
 Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1
 Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is a 6 second cycle time, and $10
per unit

 F(i) = Cp + Cf + CC + Ch + Cg

'Since this is the first iteration sets the current location as the particles best

location

 Pbest(i, 11) = F(i)
 Pbest(i, 0) = X(i, 0)
 Pbest(i, 1) = X(i, 1)
 Pbest(i, 2) = X(i, 2)
 Pbest(i, 3) = X(i, 3)
 Pbest(i, 4) = X(i, 4)
 Pbest(i, 5) = X(i, 5)
 Pbest(i, 6) = X(i, 6)
 Pbest(i, 7) = X(i, 7)
 Pbest(i, 8) = X(i, 8)
 Pbest(i, 9) = X(i, 9)
 Pbest(i, 10) = X(i, 10)
'Checks to see if this particles current location is better than the current global

best, if it is better sets current particles location as gbest

 If Pbest(i, 11) < Gbest Then
 Gbest = Pbest(i, 11)
 Gbestpoint(0) = X(i, 0)
 Gbestpoint(1) = X(i, 1)
 Gbestpoint(2) = X(i, 2)
 Gbestpoint(3) = X(i, 3)
 Gbestpoint(4) = X(i, 4)
 Gbestpoint(5) = X(i, 5)
 Gbestpoint(6) = X(i, 6)
 Gbestpoint(7) = X(i, 7)

www.manaraa.com

73

 Gbestpoint(8) = X(i, 8)
 Gbestpoint(9) = X(i, 9)
 Gbestpoint(10) = X(i, 10)
'Records in a test file when a new gbest is found

 Open "C:\ModelRun.txt" For Append As #1
 Print #1, "New G Best"; Tab; count; Tab; Gbest
 Close #1
 End If
 Next

'Sets the starting velocity for all particles as 0

 For i = 0 To N
 For j = 0 To 10
 V(i, j, 0) = 0
 Next
 Next
'This completes the start up of the algorithm

'Algorithm then continues until ConCrit number of iterations pass without a

change in the objective function value

 Do Until c > ConCrit
'Updates iterations counters

 count = count + 1
 c = c + 1
'Updates the velocity vector

 For j = 0 To 10
 V(i, j, 1) = w * V(i, j, 0) + c1 * Rnd() * (Pbest(i, 1) - X(i, j)) + c2 * Rnd() *
(Gbestpoint(j) - X(i, j))
'If velocity is greater than the variable range * RLF, the velocity is set to the

variable range * RLF

 If V(i, j, 1) > (Xmax(j) - Xmin(j) * RLF) Then
 V(i, j, 1) = (Xmax(j) - Xmin(j) * RLF)
 End If
'If velocity is less than the variable range * RLF, the velocity is set to the

variable range * RLF

 If V(i, j, 1) < -(Xmax(j) - Xmin(j) * RLF) Then
 V(i, j, 1) = -(Xmax(j) - Xmin(j) * RLF)
 End If
 V(i, j, 0) = V(i, j, 1)

www.manaraa.com

74

 Next
 Next
'Adjusts particles position based on velocity

 For i = 0 To N
 For j = 0 To 10
 X(i, j) = X(i, j) + V(i, j, 1)
 If X(i, j) < Xmin(j) Then
 X(i, j) = Xmin(j)
 End If
 Next
 Next

For i = 0 To N
'Based on particles location, adjusts controls in Arena

m1.Modules(m1.Modules.Find(smFindTag, "object.1a")).Data("Value") = "NQ(Station 2
Process.Queue) < " & X(i, 1)
m1.Modules(m1.Modules.Find(smFindTag, "object.1b")).Data("Expression") = X(i, 1)
m2.Modules(m2.Modules.Find(smFindTag, "object.2a")).Data("Value") = "NQ(Station 3
Process.Queue) < " & X(i, 2)
m2.Modules(m2.Modules.Find(smFindTag, "object.2b")).Data("Expression") = X(i, 2)
m3.Modules(m3.Modules.Find(smFindTag, "object.3a")).Data("Value") = "NQ(Station 4
Process.Queue) < " & X(i, 3)
m3.Modules(m3.Modules.Find(smFindTag, "object.3b")).Data("Expression") = X(i, 3)
m4.Modules(m4.Modules.Find(smFindTag, "object.4a")).Data("Value") = "NQ(Station 5
Process.Queue) < " & X(i, 4)
m4.Modules(m4.Modules.Find(smFindTag, "object.4b")).Data("Expression") = X(i, 4)
m5.Modules(m5.Modules.Find(smFindTag, "object.5a")).Data("Value") = "NQ(Station 6
Process.Queue) < " & X(i, 5)
 m5.Modules(m5.Modules.Find(smFindTag, "object.5b")).Data("Expression") = X(i, 5)
m6.Modules(m6.Modules.Find(smFindTag, "object.6a")).Data("Value") = "NQ(Station 7
Process.Queue) < " & X(i, 6)
m6.Modules(m6.Modules.Find(smFindTag, "object.6b")).Data("Expression") = X(i, 6)
m7.Modules(m7.Modules.Find(smFindTag, "object.7a")).Data("Value") = "NQ(Station 8
Process.Queue) < " & X(i, 7)
m7.Modules(m7.Modules.Find(smFindTag, "object.7b")).Data("Expression") = X(i, 7)
m8.Modules(m8.Modules.Find(smFindTag, "object.8a")).Data("Value") = "NQ(Station 9
Process.Queue) < " & X(i, 8)
m8.Modules(m8.Modules.Find(smFindTag, "object.8b")).Data("Expression") = X(i, 8)
m9.Modules(m9.Modules.Find(smFindTag, "object.9a")).Data("Value") = "NQ(Station 10
Process.Queue) < " & X(i, 9)
m9.Modules(m9.Modules.Find(smFindTag, "object.9b")).Data("Expression") = X(i, 9)
m10.Modules(m10.Modules.Find(smFindTag, "object.10a")).Data("Value") = "NQ(Station 1
Process.Queue) < " & X(i, 10)
m10.Modules(m10.Modules.Find(smFindTag, "object.10b")).Data("Expression") = X(i, 10)

www.manaraa.com

75

m1.Modules(m1.Modules.Find(smFindTag, "object.56")).Data("Batch Size") = X(i, 0)
m2.Modules(m2.Modules.Find(smFindTag, "Clear Jam 2")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m4.Modules(m4.Modules.Find(smFindTag, "Clear Jam 4")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
m8.Modules(m8.Modules.Find(smFindTag, "Clear Jam 8")).Data("Expression") =
"EXPO(36," & CInt(Rnd() * 10) & ")"
'Runs the model

 m.Go
'Waits until the model is finished running

 If m.SIMAN.RunMaximumReplications = m.SIMAN.RunCurrentReplication Then
m.End

End If
'Collected output data from text files and sets as modelout

 Open "C:\Thesis\AASOutput.txt" For Input As #1
 Line Input #1, modelout
 Close #1
'Based on results from model calculates objective function

 Cp = 500 * CSng(X(i, 0)) * 0.1627 '.1627 is the A/P factor that spreads the cost of the
pallets over 10 years
 ConveyorLength = CSng(CInt(X(i, 1)) + CInt(X(i, 2)) + CInt(X(i, 3)) + CInt(X(i, 4)) +
CInt(X(i, 5)) + CInt(X(i, 6)) + CInt(X(i, 7)) + CInt(X(i, 8)) + CInt(X(i, 9)) + CInt(X(i, 10)))
 Cf = CSng(1500 * (ConveyorLength + 10) * (0.2259 + 0.0314 * (ConveyorLength +
10)))
 CC = CSng((ConveyorLength + 10) * 15000 * 0.1627) '.1627 is the A/P factor that
spreads the cost of the pallets over 10 years
 Ch = 15000 + 100 * CInt(X(i, 0)) * 0.1
 Cg = 52 * 4 * 10 * (2200 - CSng(modelout)) 'demand is an 6 second cycle time, and $10
per unit

 F(i) = Cp + Cf + CC + Ch + Cg

 'If the current particles location is greater than that particles personal

best and particle is feasible, then pbest is updated

 If F(i) < Pbest(i, 11) Then
 For j = 0 To 10

 'Checks if current particle is feasible

 If X(i, j) > Xmax(j) Then
 Exit For
 End If

www.manaraa.com

76

 If X(i, j) < Xmin(j) Then
 Exit For
 End If
 If j = 10 Then
 Pbest(i, 11) = F(i)
 Pbest(i, 0) = X(i, 0)
 Pbest(i, 1) = X(i, 1)
 Pbest(i, 2) = X(i, 2)
 Pbest(i, 3) = X(i, 3)
 Pbest(i, 4) = X(i, 4)
 Pbest(i, 5) = X(i, 5)
 Pbest(i, 6) = X(i, 6)
 Pbest(i, 7) = X(i, 7)
 Pbest(i, 8) = X(i, 8)
 Pbest(i, 9) = X(i, 9)
 Pbest(i, 10) = X(i, 10)

 'If the current location is also better then Global best, gbest is

updated

 If Pbest(i, 11) < Gbest Then

 'Convergence criterion counter is updated

 c = 1
 Gbest = Pbest(i, 11)
 Gbestpoint(0) = X(i, 0)
 Gbestpoint(1) = X(i, 1)
 Gbestpoint(2) = X(i, 2)
 Gbestpoint(3) = X(i, 3)
 Gbestpoint(4) = X(i, 4)
 Gbestpoint(5) = X(i, 5)
 Gbestpoint(6) = X(i, 6)
 Gbestpoint(7) = X(i, 7)
 Gbestpoint(8) = X(i, 8)
 Gbestpoint(9) = X(i, 9)
 Gbestpoint(10) = X(i, 10)

 'Prints current solution to file

 Open "C:\ModelRun.txt" For Append As #1
 Print #1, "New G Best"; Tab; count; Tab; Gbest
 Close #1
 End If
 End If

www.manaraa.com

77

 Next
 End If
 Next

 'Reduced weighted inertia factor and then optimization is continued until

convergence

 w = w * WIF
 Loop
'Once the convergence criterion, the finish time is recorded

Finishtime = Format(Time, "Long Time")
'Run statistics and best solution found is recorded to a file

Open "C:\OptimalOut.txt" For Append As #1
 Print #1, "Run length of " & count
 Print #1, Gbest
 Print #1, Gbestpoint(0)
 Print #1, Gbestpoint(1)
 Print #1, Gbestpoint(2)
 Print #1, Gbestpoint(3)
 Print #1, Gbestpoint(4)
 Print #1, Gbestpoint(5)
 Print #1, Gbestpoint(6)
 Print #1, Gbestpoint(7)
 Print #1, Gbestpoint(8)
 Print #1, Gbestpoint(9)
 Print #1, Gbestpoint(10)
 Print #1, Starttime
 Print #1, Finishtime
Close #1

End Sub

www.manaraa.com

7
8

A

P
P

E
N

D
IX

 IV
 –

 L
A

M
P

 M
O

D
E

L

www.manaraa.com

7
9

A

P
P

E
N

D
IX

 V
 –

 A
A

A
S

 M
O

D
E

L

www.manaraa.com

8
0

A

P
P

E
N

D
IX

 V
I –

 D
IS

T
R

IB
U

T
IO

N
 C

E
N

T
E

R
 M

O
D

E
L

www.manaraa.com

8
1

A

P
P

E
N

D
IX

 V
II –

 C
A

T
A

L
O

G
 C

E
N

T
E

R
 M

O
D

E
L

www.manaraa.com

82

APPENDIX VIII – DIFFERENCE IN MEANS

Example Test for Statistical Difference in Means:

s�: �. 2 �4 , 0
s�: �. 2 �4 � 0

g. p.: �K , �w�. 2 w�4 �
�d.4�. / d44�4

g. p.: �K , �202,332 2 279353��73052410 / 134864413 , 21.75

Since |�K| is not greater then ��/4=2.080 the two numbers are not statistically

different.

www.manaraa.com

83

APPENDIX IX – PARAMETER ADJUSTMENT

0

100

200

300

400

500

600

700

275000

280000

285000

290000

295000

300000

305000

310000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Weighted Inertia Factor

Effect of Adjusting Weighted Inertia Factor

on Distribution Center Model

Average OF

Average OF Calculations

0

100

200

300

400

500

600

700

250000

260000

270000

280000

290000

300000

310000

320000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Pheromone Release Rate

Effect of Adjusting Pheromone Release

Rates on Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

84

0

200

400

600

800

1000

275000

280000

285000

290000

295000

300000

305000

310000

315000

0 2 4 6

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C3 Level

Effect of Adjusting C3 on Distribution

Center Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

275000

280000

285000

290000

295000

300000

305000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C1 and C2 Level

Effect of Adjusting C1 and C2 on

Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

85

0

200

400

600

800

1000

1200

1400

265000

270000

275000

280000

285000

290000

295000

300000

305000

310000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Population

Effect of Adjusting Population Level on

Distribution Center Model

Average OF

Average OF Calculations

0

200

400

600

800

260000

270000

280000

290000

300000

310000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Convergence Criteria

Effect of Adjusting Convergence Criteria on

Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

86

0

200

400

600

800

1000

1200

0

100000

200000

300000

400000

0.5 0.7 0.9

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Pheromone Decay Factor

Effect of Adjusting Pheromone Decay

Factor on Distribution Center Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

270000

280000

290000

300000

310000

320000

0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Range Limit Factor

Effect of Adjusting Range Limit Factor on

Distribution Center Model

Average OF

Average OF Calculations

www.manaraa.com

87

0

200

400

600

800

1000

1200

1400

1600

0

100000

200000

300000

400000

500000

600000

0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Weighted Inertia Factor

Effect of Adjusting Weighted Inertia Factor

AAAS Model

Average OF

Average OF Calculations

0

500

1000

1500

2000

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Convergence Criteria

Effect of Adjusting Convergence Criteria on

AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

88

0

500

1000

1500

2000

2500

0

100000

200000

300000

400000

500000

0.85 0.9 0.95 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Decay Rate

Effect of Adjusting Pheromone Decay

Factor on AAAS Model

Average OF

Average OF Calculations

0

500

1000

1500

2000

2500

3000

3500

4000

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Population Size

Effect of Adjusting Population Size on

AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

89

0

200

400

600

800

1000

1200

1400

1600

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.2 0.4 0.6 0.8

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Pheromone Release Rate

Effect of Adjusting Pheromone Release

Rate on AAAS Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1600

1800

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2 4 6 8

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C3 Level

Effect of Adjusting C3 on AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

90

0

200

400

600

800

1000

1200

1400

0

100000

200000

300000

400000

500000

0 1 2 3 4 5

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C1 and C2 Level

Effect of Adjusting C1 and C2 on AAAS

Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1600

0

100000

200000

300000

400000

500000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Range Limit Factor

Effect of Adjusting Range Limit Factor

AAAS Model

Average OF

Average OF Calculations

www.manaraa.com

91

0

500

1000

1500

2000

2500

3000

1700000

1720000

1740000

1760000

1780000

1800000

1820000

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Convergence Criteria

Effect of Adjusting Convergence Criteria on

Lamp Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1700000

1720000

1740000

1760000

1780000

1800000

0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Decay Factor

Effect of Adjusting Pheromone Decay Factor

on Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

92

0

200

400

600

800

1000

1200

1400

1600

1710000

1720000

1730000

1740000

1750000

1760000

1770000

1780000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Percentage of Pheromones Released

Effect of Adjusting Pheromone Release Rate on

Lamp Model

Average OF

Average OF Calculations

0

500

1000

1500

2000

2500

3000

1710000

1720000

1730000

1740000

1750000

1760000

1770000

1780000

1790000

1800000

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Population

Effect of Adjusting Population on Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

93

0

200

400

600

800

1000

1200

1700000

1710000

1720000

1730000

1740000

1750000

1760000

1770000

0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C3 Value

Effect of Adjusting C3 on Lamp Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1600

1680000

1700000

1720000

1740000

1760000

1780000

1800000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Maximum Velocity Allowed by Percent of Variables Range

Effect of Adjusting Range Limit Factor on Lamp

Model

Average OF

Average OF Calculations

www.manaraa.com

94

0

200

400

600

800

1000

1200

1400

1500000

1550000

1600000

1650000

1700000

1750000

1800000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C1 and C2 Value

Effect of Adjusting C1 and C2 on Lamp Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

1400

1720000

1740000

1760000

1780000

1800000

1820000

0.45 0.55 0.65 0.75 0.85 0.95 1.05

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Weighted Inertia Factor

Effect of Adjusting Weighted Inertia Factor on

Lamp Model

Average OF

Average OF Calculations

www.manaraa.com

95

0

200

400

600

800

1000

1200

1400

1600

1800

12500000

12600000

12700000

12800000

12900000

13000000

13100000

13200000

13300000

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Population

Effect of Adjusting Population on Catalog

Center Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

12500000

12600000

12700000

12800000

12900000

13000000

13100000

13200000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C1 and C2

Effect of Adjusting C1 and C2 on Catalog

Center Model

Average OF

Average OF Calculations

www.manaraa.com

96

0

200

400

600

800

1000

1200

1400

12550000

12600000

12650000

12700000

12750000

12800000

12850000

12900000

12950000

13000000

13050000

13100000

0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

C3

Effect of Adjusting C3 on Catalog Center

Model

Average OF

Average OF Calculations

0

500

1000

1500

2000

2500

12580000

12600000

12620000

12640000

12660000

12680000

12700000

12720000

12740000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Pheromone Release Rate

Effect of Adjusting Pheromone Release Rate

on Catalog Center Model

Average OF

Average OF Calculations

www.manaraa.com

97

0

200

400

600

800

1000

1200

1400

1600

12550000

12600000

12650000

12700000

12750000

12800000

12850000

12900000

12950000

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Convergence Criteria

Effect of Adjusting Convergence Criteria on

Catalog Center Model

Average OF

Average OF Calculations

0

200

400

600

800

1000

1200

12600000

12650000

12700000

12750000

12800000

12850000

0.5 0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

WIF

Effect of Adjusting WIF on Catalog Center

Model

Average OF

Average OF Calculations

www.manaraa.com

98

0

100

200

300

400

500

600

700

800

900

12600000

12650000

12700000

12750000

12800000

12850000

12900000

0.5 0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Pheromone Decay Factor

Effect of Adjusting Pheromone Decay Factor

on Catalog Center Model

Average OF

Average OF Calculations

0

100

200

300

400

500

600

700

800

900

1000

12600000

12650000

12700000

12750000

12800000

12850000

12900000

12950000

0 0.2 0.4 0.6 0.8 1 1.2

N
u

m
b

e
r

o
f

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 C
a

lc
u

la
ti

o
n

s

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 V
a

lu
e

Range Limit Factor

Effect of Adjusting Range Limit Factor

Catalog Center Model

Average OF

Average OF Calculations

	2008
	Pheromone particle swarm optimization of stochastic systems
	Paul Allan Wilhelm
	Recommended Citation

	Microsoft Word - Thesis to Submit to Department.docx

